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Abstract

Algebraic Multigrid (AMG) methods are often robust and effective solvers for
solving the large and sparse linear systems that arise from discretized PDEs and
other problems, relying on heuristic graph algorithms to achieve their performance.
Reduction-based AMG (AMGr) algorithms attempt to formalize these heuristics by
providing two-level convergence bounds that depend concretely on properties of the
partitioning of the given matrix into its fine- and coarse-grid degrees of freedom.
MacLachlan and Saad (SISC 2007) proved that the AMGr method yields provably
robust two-level convergence for symmetric and positive-definite matrices that are
diagonally dominant, with a convergence factor bounded as a function of a coarsening
parameter. However, when applying AMGr algorithms to matrices that are not diag-
onally dominant, not only do the convergence factor bounds not hold, but measured
performance is notably degraded. Here, we present modifications to the classical
AMGr algorithm that improve its performance on matrices that are not diagonally
dominant, making use of strength of connection, sparse approximate inverse (SPAI)
techniques, and interpolation truncation and rescaling, to improve robustness while
maintaining control of the algorithmic costs. We present numerical results demon-
strating the robustness of this approach for both classical isotropic diffusion problems
and for non-diagonally dominant systems coming from anisotropic diffusion.
KEYWORDS:
Algebraic Multigrid, Reduction-based Multigrid, Sparse Approximate Inverse.

1 INTRODUCTION

Partial differential equations (PDEs) arise naturally as mathematical models of physical systems in many fields of science and
engineering. As analytical techniques for their solution are limited to simple equations and geometries, numerical approximation
of solutions via discretization techniques is ubiquitous. Standard discretizations necessitate the solution of large linear and
nonlinear systems of equations which, in turn, requires fast and efficient algorithms. Among the techniques most commonly
used for discretized elliptic equations are multigrid (MG) methods, known for their efficient and robust solution of a wide range
of problems. Geometric multigrid (GMG) methods are often most efficient, but require detailed knowledge of the problem to be
solved, its discretization, and regular structure of the underlyingmesh hierarchy. In contrast, algebraic multigrid (AMG)methods
can be effectively applied to problems on unstructured grids, or with highly variable (or discontinuous) coefficients. While the
idea of AMG was first proposed over 40 years ago1–4, understanding and improving the convergence of AMG remains an active
area of research.
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Classical (Ruge-Stüben) AMG has become a workhorse algorithm in scientific computing, particularly due to high-quality
implementations available in standard packages5–7. While it provides an efficient and robust solution algorithm for a wide class
of diffusion problems, its reliance on heuristics and algorithmic parameters (that can be difficult to tune) is often seen as a
difficult hurdle to overcome, particularly for critical applications. As a result, significant effort has been invested in recent years
in the development of AMG approaches with rigorous convergence bounds. Within this area are several approaches based on
the pairwise aggregation methodology8–12 that offers guaranteed convergence for problems such as the graph Laplacian. An
alternative approach builds on the reduction-based multigrid methodology first proposed by Ries, Trottenberg, and Winter13.
The reduction-based algebraic multigrid (AMGr) methodology introduced by MacLachlan et al.14 uses algebraic properties of
the linear system to determine reduction-like grid-transfer operators and relaxation that again leads to guaranteed convergence
rates.
The basic principle of reduction-based multigrid follows from classical cyclic reduction algorithms15 that reduce the cost of

the direct solution of linear systems, Ax = b, by partitioning the degrees of freedom into two sets that we denote by F and
C (in typical multigrid notation). The key feature of cyclic reduction is that this partitioning should be done in a way so that
the submatrix of A over the set F , denoted AFF , is a diagonal matrix. (Equivalently, the set F is an independent set in the
graph associated with the sparse matrix, A.) Multigrid reduction13 and AMGr14 generalize this by allowing AFF to be non-
diagonal (F is not required to be an independent set), but only spectrally equivalent to a diagonal matrix. A key question left
unanswered in this work is how to generate such partitions. MacLachlan and Saad16 show that the task of generating the largest
possible F set is an integer linear programming problem and, consequently, proposed a greedy algorithm for the partitioning
with linear complexity. Notably, they proved that if A is symmetric, positive definite, and diagonally dominant, then there is a
two-grid AMGr method with a guaranteed convergence bound. Several theoretical and practical improvements to the theory and
algorithms of MacLachlan and Saad16 have been proposed, with improved AMGr algorithms and convergence bounds17, 18 and
improved coarsening algorithms19, 20. Nonsymmetric variants have also been considered21–23. Further research into multigrid
reduction (but not AMGr) has also been commonplace in recent years, with the emergence of multigrid-reduction-in-time24
(MGRIT) methodologies for the solution of time-dependent PDEs.
Despite these developments, attaining effective AMGr convergence has remained essentially limited to systems with matrices

that are either close to diagonally dominant or can be reordered to be close to lower triangular. Unfortunately, these limitations are
significant, and preclude applying AMGr to many important and interesting classes of problems, including common AMG test
cases, such as anisotropic diffusion equations, or problems discretized on anisotropic meshes. Poor performance on anisotropic
problems, in particular, is reported in existing AMGr results16, 19 that has only been overcome with expensive and impractical
fixes, such as moving substantial numbers of points from F to C , in order to construct suitably improved interpolation operators
within the AMGr framework. In this paper, we revisit the basic AMGr framework, with the goal of overcoming the barriers to
achieving acceptable convergence for anisotropic problems. To do this, we look for more practical algorithmic choices within
an AMGr-style algorithm. Specifically, we consider four ingredients for improving AMGr performance:

1. C-relaxation; while original AMGr focused on F -relaxation, we show that using C-relaxation (as considered in other
settings18, 24) can be particularly helpful for these problems;

2. Sparse Approximate Inverses (SPAI); while the original AMGr papers focused on approximating A−1FF by a diagonal
matrix, we consider using the SPAI algorithm25–27 to offer better approximation of A−1FF while still maintaining sparsity;

3. Strength of Connection; while the original AMGr algorithms do not rely on the classical AMG3, 4 notion of “strong
connections” to filter small entries from thematrix, we find that such filtering is critical to success for anisotropic problems,
where large “wrong-sign” off-diagonal entries appear, but cannot be productively used in the relaxation or coarse-grid
correction processes; and

4. Interpolation truncation; the combination of techniques described above leads to effective AMGr-style solvers for a wider
range of problems, but with higher algorithmic complexity than is needed; thus, we use the technique of interpolation
truncation28–30 to control these costs.

Numerical results demonstrate that these techniques can be used in combination to improve the performance of AMGr for both
isotropic and anisotropic diffusion problems.
Sparse approximate inverses are one of a class of algorithms that define preconditioners for Ax = b by prescribing a form for

matrixM , then minimizing some norm of I −MA (or I − AM). Originally proposed and investigated by Benson and Fred-
erickson31–33, recent investigations include factorized sparse approximate inverses25 (FSAI), which aim to compute a sparse
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Algorithm 1 AMG Setup Phase
1: function AMG-TWO-LEVEL-SETUP(A)
2: C, F ← split the degrees of freedom into coarse and fine nodes
3: P ← form interpolation operator
4: Ac ← P TAP
5: return (P ,Ac)
6: end function

approximation to the Cholesky factorization of SPD matrixA, and SPAI techniques26, 27, 34 that directly compute sparse approx-
imations to A−1. The use of SPAI techniques in multigrid methods dates back almost to their initial introduction31, 35, primarily
to replace the use of standard relaxation schemes, such as the weighted Jacobi and Gauss-Seidel iterations. The use of SPAI
techniques for relaxation within both geometric and algebraic multigrid has been considered more recently in several ways36–42.
Similar ideas have been used in other contexts, to build interpolation operators43, 44 or improve coarse-grid operators45. The
work in this paper is closest to the ideas presented by Bollhöfer46, where SPAI was used to determine both the relaxation scheme
and the interpolation operator, although the remaining details of the scheme are quite different. We also note similarity to the
work of Meurant47, 48, where entries from the AINV49 preconditioner were directly used to determine interpolation alongside
AINV for relaxation.
The remainder of this paper is organized as follows. In Section 2, we give an introduction to algebraic multigrid, with a

particular focus on reduction-based AMG (AMGr).We highlight, in Section 2.3, that AMGr as it exists has significant difficulties
for anisotropic diffusion equations, motivating the work that follows. A key component of the algorithms considered here is the
Sparse Approximate Inverse methodology of Grote and Huckle27, we review this as well in Section 3. The main contribution of
this paper is the generalized AMGr algorithm developed in Section 4. Supporting numerical results are presented in Section 5,
followed by conclusions in Section 6.

2 ALGEBRAIC MULTIGRID

Multigrid methods are based on the principle of complementarity, using fine-grid relaxation and coarse-grid correction to effi-
ciently damp all errors in the approximation of solutions to linear systems Ax = b. Geometric multigrid methods (GMG) fix a
multigrid hierarchy by directly discretizing the PDE on a series of meshes defined by the problem geometry, and by adapting
the relaxation scheme to complement the coarse-grid correction process defined in this way. Algebraic multigrid methods, in
contrast, do not rely on explicit knowledge of the geometry nor the PDE, instead determining the coarse levels of the multigrid
hierarchy in a setup phase that precedes the solution phase of the multigrid algorithm. In the setup, the set of degrees of freedom
(or points) on the finest grid,Ω, is partitioned into disjoint sets,Ω = C∪F (withC∩F = ∅). The degrees of freedom in the setC
constitute the points on the second level. Along with this partitioning, an interpolation operator, P , is constructed to map vectors
from C onto Ω; similarly a restriction operator is defined, R = P T (in the symmetric case, as considered here), to map vectors
from Ω onto C . With this, the Galerkin coarse-grid operator, AC = P TAP , is formed and the process continues recursively on
AC and C . The hierarchy is constructed until the number of nodes on a coarse grid is sufficiently small that direct factorization
of AC is feasible. The algorithm for a two-level setup phase is shown in Algorithm 1. Once the setup phase is completed, the
solution phase solves the original system of equations using a standard multigrid cycling algorithm. A two-level algorithm is
shown in Algorithm 2. Multilevel generalizations come from recursively solving ACeC = rC using the two-grid methodology,
either once per level (leading to a V-cycle) or multiple two-grid sweeps per level (leading, for example, to the W-cycle). AMG
methods are generally distinguished by how they define C from Ω, and how they define P from C and A. Below, we review the
classical AMG algorithm, as presented by Ruge and Stüben4, and the reduction-based AMG algorithm of MacLachlan et al.14.

2.1 Classical (Ruge-Stüben) AMG
Classical AMG makes use of the notion of strong connections in the graph corresponding to matrix A to define the coarse-fine
partitioning. In the original algorithm, point i is said to be strongly connected to point j if −Aij ≥  maxk≠i(−Aik) for some
 ∈ (0, 1] (where the negative signs reflect the expectation that A be an M-matrix, or one where positive off-diagonal entries are
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Algorithm 2 AMG Solution Phase
1: function AMG-TWO-LEVEL-V-CYCLE(A, b,x, P )
2: for j ← 1,… , �1 do ⊳ Run �1 sweeps of pre-relaxation
3: x ← relax on x
4: end for
5: rC ← P T (b − Ax)
6: eC ← solution of ACeC = rC ⊳ Solve the coarse-level problem
7: x ← x + P eC
8: for j ← 1,… , �2 do ⊳ Run �2 sweeps of post-relaxation
9: x ← relax on x
10: end for
11: return x
12: end function

not substantial). Many other definitions of strong connections have been considered in the literature, including the symmetric
strength measure commonly used in smoothed aggregation AMG, where the connection between i and j is said to be strong
if |Aij| ≥ 

√

AiiAjj . Local approximations of the inverse of A and algebraically smooth error have also been used to define
strong connections50, 51, as has the concept of algebraic distances52. In all cases, the strength measure is used to “filter” the
entries in A, and then the set C is defined by choosing a maximal independent set over the graph of strong connections. This
can be characterized, for example, by the properties that each point in F is strongly dependent on at least one C-point, but no
two C-points can be strongly dependent on one another.
The standard interpolation operator in classical AMG is formulated based on the assumption that algebraically smooth errors

have small residuals after relaxation. Hence, the residual equation after relaxation can be written as Ae ≈ 0. For the i-th degree
of freedom, i ∈ F , this gives

Aiiei ≈ −
∑

k∈Ci

Aikek −
∑

j∈F s
i

Aijej −
∑

l∈Fw
i

Ailel , (1)

whereCi,F s
i , andFw

i are theC-neighbors, strongly connectedF -neighbors, and weakly connectedF -neighbors of the i-th point,
respectively. The standard interpolation operator is then derived by assuming that el ≈ ei for weakly-connected neighbors, while

ej ≈
∑

k∈Ci Ajkek
∑

m∈Ci Ajm
,

for points j ∈ F s
i . Substituting these into (1) and solving for ei yields the interpolation formula

ei =
∑

k∈Ci

−Aik −
∑

j∈F s
i

AijAjk
∑

m∈Ci Ajm

Aii +
∑

l∈Fw
i
Ail

ek. (2)

This defines the interpolation formula for all points i ∈ F ⊂ Ω, assuming that ek is known for all k ∈ Ci. For points k ∈ C , we
use direct injection of values from coarse-grid points to their fine-grid counterparts in Ω.

2.2 Reduction-based algebraic multigrid (AMGr)
Cyclic reduction15 was originally proposed as a direct solver for certain linear systems that arose from finite-difference dis-
cretization of simple PDEs. Assuming that the degrees of freedom are already partitioned into coarse and fine nodes, the linear
system Ax = b is reordered to have F degrees of freedom followed by C degrees of freedom, writing

A =
[

AFF −AFC
−ACF ACC

]

x =
[

xF
xC

]

b =
[

bF
bC

]

. (3)
An exact algorithm for the solution of Ax = b in this partitioned form is given by

1. yF = A−1FFbF ,
2. Solve (ACC − ACFA−1FFAFC

)

xC = bC + ACFyF ,
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3. xF = yF + A−1FFAFCxC .
This can be turned into an iterative method for solving Ax = b in the usual way, replacing the right-hand side vector, b, by the
evolving residual, leading to reduction-based multigrid13. In this form, we compute updates to the current approximation, x(k),
as

1. x(k+1∕2)F = x(k)F + A−1FF
(

bF − AFFx
(k)
F + AFCx

(k)
C

)

,
2. Solve (ACC − ACFA−1FFAFC

)

yC = bC + ACFx
(k+1∕2)
F − ACCx

(k)
C ,

3. x(k+1)C = x(k)C + yC ,
4. x(k+1)F = x(k+

1∕2)
F + A−1FFAFCyC .

We note that, as given above, this is still an exact algorithm, as x(1) = x = A−1b for any initial guess, x(0). To make an iterative
method from this skeleton, we introduce approximations of A−1FF in three places in the above algorithm, namely

Ã−1FF ≈ A
−1
FF ÃC ≈ ACC − ACFA−1FFAFC WFC ≈ A−1FFAFC , (4)

leading to the iteration:
1. x(k+1∕2)F = x(k)F + Ã−1FF

(

bF − AFFx
(k)
F + AFCx

(k)
C

)

,
2. Solve ÃCyC = bC + ACFx

(k+1∕2)
F − ACCx

(k)
C ,

3. x(k+1)C = x(k)C + yC ,
4. x(k+1)F = x(k+

1∕2)
F +WFCyC .

Viewing this as a two-grid algorithm, we recognize the first step as special form of relaxation, known as F -relaxation, where
the approximation to A−1FF is accomplished via a standard weighted Jacobi or Gauss-Seidel iteration. The second step then
represents a coarse-grid solve, where the residual is restricted to the coarse-grid by injection, and the correction, yC , is computed
using an approximation, ÃC , of the true Schur complement,ACC −ACFA−1FFAFC . The final two steps represent the interpolationof the correction, writing the interpolation operatorP = [WFC

I

]. This can be viewed as an approximation of the ideal interpolation
operator53, WFC ≈ A−1FFAFC . Notably, this algorithm differs from standard multigrid cycling in several ways, including the
fixed use of injection for the restriction of the residual to the coarse grid, and the lack of post-relaxation sweeps.
As written above, there is little guidance in how to choose the three approximations in (4). MacLachlan et al.14 address this

in their development of the reduction-based AMG (AMGr) algorithm, connecting convergence of the two-grid scheme with
properties of AFF . In particular, it is assumed that AFF can be approximated by known matrix DFF for which computing the
action ofD−1

FF on a vector is computationally feasible. From this, Theorem 1 holds, using the notation that matricesA ⪰ B when
xTAx ≥ xTBx for all vectors x.
Theorem 1. 14 Consider the symmetric and positive-definite matrix A =

[

AFF −AFC
−ATFC ACC

]

such that AFF = DFF +  , with DFF

symmetric, 0 ⪯  ⪯ �DFF for some � ≥ 0, and
[

DFF −AFC
−ATFC ACC

]

⪰ 0. Define relaxation with error-propagation operator R =
(

I − �
[

D−1
FF 0
0 0

]

A
)

for � = 2∕(2+ �), interpolation P =
[

D−1
FFAFC
I

]

, and coarse-level correction with error-propagation operator
T = I−P (P TAP )−1P TA. Then the multigrid cycle with � pre-relaxation sweeps, coarse-level correction, and � post-relaxation
sweeps has error propagation operator MG2 = R� ⋅ T ⋅ R� which satisfies

||MG2||A ≤
(

�
1 + �

(

1 +
(

�2�−1

(2 + �)2�

)))1∕2

< 1. (5)
Several generalizations of both the theory and practice of reduction-based multigrid methods have since been developed. A

generalization to non-symmetricM-matrices was proposed and analyzed byMense andNabben54, using the tools of weak regular
splitting55. For symmetric and positive definite problems, Brannick et al.18 study the introduction of more general relaxation
schemes, as well as the use of different approximations of AFF for interpolation and relaxation. Gossler and Nabben17 examine
generalization of AMGr to the use of Chebyshev polynomial acceleration of multiple relaxation sweeps. For strongly non-
symmetric systems, Manteuffel et al.22, 23 have proposed similar approaches using so-called approximate ideal restriction (AIR)
techniques, that offer excellent performance for advection-dominated problems. None of the above schemes, however, address
the poor performance observed in AMGr-type methods for anisotropic problems, which is the motivation for the present work.
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2.2.1 Coarsening in AMGr
Theorem 1 establishes existence of an interpolation operator, P , provided that the matrix A can be partitioned into

[

AFF −AFC
−ATFC ACC

]

and an approximation, DFF , of AFF can be made that satisfies the assumptions in the theorem. While this is insightful, it does
not address the fundamental question of how to generate a partitioning for which the assumptions hold with small parameter �.
To answer this question, MacLachlan and Saad16 propose to partition the rows and columns of A in order to ensure the diagonal
dominance of AFF , allowing DFF to be chosen as a diagonal matrix. In particular, for each row, i, the diagonal dominance of
row i over the F points is quantified by

�i =
|Aii|

∑

j∈F |Aij|
.

Then, AFF is said to be �-diagonally dominant if �i ≥ � for all i ∈ F , for some � > 1∕2 that measures the diagonal dominance
of AFF . If AFF is �-diagonally dominant, then the diagonal matrix, DFF , with (DFF )ii = (2 − 1

�
)Aii for all i ∈ F yields

0 ⪯  ⪯ 2−2�
2�−1

DFF , giving an �-dependent convergence bound if the other assumptions of Theorem 1 are satisfied. Furthermore,
if A is symmetric, positive-definite, and diagonally dominant, then this condition guarantees that all conditions of Theorem 1
are satisfied.
In addition to establishing this connection between the diagonal dominance parameter � and the convergence parameter, �,

MacLachlan and Saad16 pose the partitioning algorithm as an optimization problem: for a given � > 1∕2, find the largest F -set
such that �i ≥ � for every i ∈ F . This can be written as

max
F⊂Ω

|F |,

subject to |Aii| ≥ �
∑

j∈F
|Aij|, ∀i ∈ F .

(6)

MacLachlan and Saad16 show that finding the optimal solution to (6) is NP-complete and, consequently, propose a greedy
algorithm to approximately solve the optimization problem. The greedy algorithm acts iteratively, adding points to the C-set
one at a time, and moving any points that are guaranteed to satisfy the inequality constraint in (6) into the F -set, until a full
partition is computed.
While the greedy coarsening algorithm was demonstrated to be effective in some settings, Zaman et al.19 demonstrate that

there are also cases where the resulting optimality gap can be significant. To address this, they propose to apply simulated
annealing to the optimization problem in (6). In this approach, the set of points, Ω, is first partitioned into non-overlapping
subdomains, and a local partitioning is computed on each subdomain, starting from the assumption that all points are to be
made C points. Using a Gauss-Seidel-like approach, the subdomains are processed successively, running a number of annealing
steps on points within the subdomain, randomly swapping some C points to be F points or vice-versa, and accepting the move
(with some probability) if it improves the overall fitness (quantified by the number of F points that satisfy the constraint in (6)).
Zaman et al.19 show that this approach can produce substantially better partitionings than the greedy approach, albeit at the
greatly increased cost of many simulated annealing steps. Similar work by Taghibakhshi et al.20 uses reinforcement learning to
solve the same problem at a lower cost. In both of these papers, while “good” solutions are found to the optimization problem
in (6), poor performance is observed for anisotropic diffusion problems, as these problems do not satisfy the diagonal dominance
condition required by the theory of MacLachlan and Saad16 in the assumptions of Theorem 1.

2.3 Failure of AMGr for anisotropic diffusion
To demonstrate the convergence problems, we consider applying AMGr (following the prescription of MacLachlan and Saad16)
to the solution of the two-dimensional anisotropic diffusion problem,

−∇ ⋅K(x, y)∇u(x, y) = b(x, y) (7)
in the domain [0, 1] × [0, 1] with Dirichlet boundary conditions. We choose the tensor coefficient K(x, y) = QHQT , where

Q =
[

cos(�) − sin(�)
sin(�) cos(�)

]

, H =
[

10−6 0
0 1

]

, (8)

and � specifies the direction of anisotropy in the problem. For � = 0 this gives the grid-aligned anisotropic equation −10−6uxx−
uyy = b, while 0 < � < �∕2 gives a non-grid-aligned diffusion tensor. Table 1 presents convergence results for the standard
finite-difference and bilinear finite element discretizations of this problem, with � = 0, �∕6, and �∕4. For simplicity, we present
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TABLE 1 Performance of two-level AMGr for the anisotropic diffusion problem.

� Discretization Eigenvalues of D−1
FFAFF

[

DFF −AFC
−ATFC ACC

] Convergence factor Complexities
min max � Cgrid Cop

0 FD 1.00 3.00 positive definite 0.75 1.33 1.49
FE 1.00 6.83 indefinite 0.98 1.49 2.14

�∕6 FD 1.04 5.59 indefinite 0.96 1.42 1.87
FE 1.00 7.09 indefinite 0.97 1.36 1.72

�∕4 FD 1.21 6.73 indefinite 0.96 1.39 1.79
FE 1.12 5.80 indefinite 0.96 1.33 1.59

results for a uniform 32 × 32 grid, although similar results are observed for larger meshes. Here, and in all results that follow,
we measure convergence by solving the homogeneous problem, Ax = 0, with a randomly chosen initial guess for x. Writing
e(k) as the error in the kth approximation to x = 0, we estimate the asymptotic convergence factor by running 50 (stationary)
multigrid iterations, then estimating � ≈ (

‖e(50)‖A∕‖e(10)‖A
)1∕40, averaging convergence over the final 40 iterations. We note

that, in all cases, the coarsening algorithm (simulated annealing, in this case) generates a partitioning such that the matrix AFF
is well-approximated by a diagonal matrix, DFF ; however, only in the case of the finite-difference discretization of the grid-
aligned diffusion equation (when the discretization matrix, A, is diagonally dominant), does the required semidefiniteness of
[

DFF −AFC
−ATFC ACC

]

hold. This correlates strongly with the resulting measured asymptotic convergence factor for the method. Both
MacLachlan and Saad16 and Zaman et al.19 consider remedies for this behavior, such as augmenting the C set in a style similar
to classical AMG; while this improves the overall convergence of the method, it also leads to greatly increased grid and operator
complexities, making it an unsatisfactory solution.
Here, and in all tables that follow, we use color-coding to indicate quality of the results shown. For measured convergence

factors, we denote a “good” convergence factor to be below 0.4 (indicated in green), while a “bad” convergence factor, above
0.8, is shown in red (with values in between, 0.4 < � < 0.8, shown in black text). For two-grid operator complexity, we highlight
results in green if the complexity is below 1.5, in red if it is above 2.5, and in orange for values between 2.0 and 2.5. As operator
complexity, in particular, is expected to growwith the number of levels in the hierarchy, we use similar highlighting with different
thresholds for three-grid and multigrid operator complexity, showing results in green if it is below 2.0, red if it is above 3.0, and
orange for values between 2.5 and 3.0. As the results that follow show relatively little variation in AMG grid complexity, we
choose not to highlight values for this measure. Definitions of these complexities are found below, in Section 4.1.

3 SPARSE APPROXIMATE INVERSE (SPAI) METHODS

While originally proposed in the 1970’s by Benson and Frederickson31, 32, SPAI techniques were more systematically developed
and studied in the 1990’s (and subsequently) by a number of authors25–27, 34, 56. The general idea of SPAI techniques is to compute
a matrix, M , to minimize some norm of I −MA or I − AM , with constraints on the sparsity of M . These constraints may
be fixed (e.g., some fixed set of elements of M is allowed to be nonzero), or may be adaptively determined by trying to best
minimize the chosen norm within some limitations on either the total number of nonzero entries inM or the row/column-wise
number of nonzero elements. Here, we focus on the variant of the SPAI algorithm proposed by Hawkins and Chen57, in which
the Frobenius norm of B − AM is minimized for a given matrix, B, over a fixed nonzero pattern for each column. If B = I ,
then this reduces to a simplified version of the SPAI algorithm of Grote and Huckle27, omitting their adaptive calculation for
increasing the nonzero pattern for each column.
Algorithm 3 presents the SPAI algorithm, where the inputs are given by matrices A and B, and a nonzero sparsity pattern,  ,

for the sparse approximate inverseM . The algorithm loops independently over each column, j, inM . In the initialization stage
of the algorithm (Lines 3 through 7), the rows,  , in the initial sparsity pattern of  for column j are extracted, as is the set of
rows, , of A for which matrix A has a nonzero entry in a column in  , defining a submatrix, Ā, of A that is used to initialize
column j ofM . Two auxiliary vectors are also formed, corresponding to the full j th column of B, denoted b, and its restriction
to the rows of Ā, denoted b̄. Column j of M then comes from using the QR decomposition of Ā to solve the unconstrained
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minimization problem of minimizing ‖
‖

b̄ − Ām̄‖
‖2, noting that Ā is expected, by its construction, to have more rows than columns,

so that this is not expected to yield a zero residual. The computed solution, m̄, is injected into a full vector, m, which becomes
the j th column ofM .

Algorithm 3 SPAI algorithm
1: function SPAI(A,B,)
2: for j ← 1,… , ncol do ⊳ ncol is number of columns in A
3:  ← {i ∣ (i, j) ∈ }
4:  ← set of indices of nonzero rows of A(∶, )
5: b ← B(∶, j)
6: Ā← A(, )
7: b̄ ← B(, j)
8: Compute QR decomposition of Ā
9: m̄ ← argminm̄ ‖

‖

b̄ − Ām̄‖
‖2 ⊳ Unconstrained least-squares via QR

10: m ← m̄ with inserted zeros
11: M(∶, j)← m
12: end for
13: returnM
14: end function

Sparse approximate inverse algorithms similar to Algorithm 3 have been investigated for use in both relaxation and interpo-
lation in several settings in the past. However, this usage has generally been in defining approximations to the inverse of A in its
entirety, while we look at the possible use of SPAI techniques through the lens of the AMGr methodology. In what follows, we
will make use of SPAI in three ways:

1. In F -relaxation where, given a proxy matrix, ÂFF , for AFF (possibly equal to AFF ), and B = IFF , Dinv
FF is constructed

as the SPAI approximation to Â−1FF with a fixed sparsity pattern equal to that of ÂFF ;
2. In C-relaxation where, given a proxy matrix, ÂCC , for ACC (possibly equal to ACC ), and B = ICC ,Dinv

CC is constructed as
the SPAI approximation to Â−1CC with a fixed sparsity pattern equal to that of ÂCC ; and

3. In interpolation, where we use the Hawkins and Chen modfication57, to solveminW ‖ÂFC − ÂFFW ‖F for sparse approx-
imate columns ofW = Â−1FF ÂFC for proxy matrices, ÂFF and ÂFC , for AFF and AFC , respectively, with a fixed nonzero
pattern equal to that of ÂFC + ÂFF ÂFC .

The first two of these can be viewed as generalizations of the use of SPAI on all of A as relaxation37, 39 to the F - and C-
relaxations typically used in reduction-based AMG. The third bears similarity to Meurant’s Algorithm I347, where SPAI on A
(either in its original ordering or reordered according to the F -C partitioning) is used to generate an approximate inverse matrix,
M , from whichMFF is extracted to form an interpolation operator [MFFAFC

I

]. We note that this is akin to approximating ideal
interpolation,

[

A−1FFAFC
I

]

by using an approximation to (A−1)FF rather than (AFF
)−1. As discussed below, direct use of SPAI to

approximateA−1FF ,A−1CC , andA−1FFAFC in these contexts does not directly lead to effective performance, so we consider additional
tools from standard AMG development to both improve convergence and lower cost.

4 GENERALIZING AMGR

Baseline results: From the results in Table 1 and those documented in other works16, 19, 20, the coarse-grid correction process
emerges as a primary source for the poor performance of AMGr on anisotropic problems. UsingD−1

FFAFC with diagonalDFF for
the C-to-F interpolation matrix is more restrictive than the interpolation operators used in classical multigrid, as interpolation
to an F point is only allowed from directly connected C points (corresponding to the nonzero entries in AFC ). To test this
theory, we first use SPAI to determine an interpolation operator of the form P =

[

W
I
], where the sparsity pattern ofW is fixed
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TABLE 2 Two-level AMGr convergence factors for anisotropic FE discretization using semi-coarsening in the y direction by a
factor of three. Interpolation of F -nodes uses the SPAI approximation to A−1FFAFC and the SPAI approximation to A−1FF is used
for relaxation.

� = 0 � = �∕6 � = �∕4
Grid size � Cgrid Cop � Cgrid Cop � Cgrid Cop
16 × 16 0.021 1.31 1.90 0.006 1.31 1.90 0.213 1.31 1.90
32 × 32 0.023 1.31 2.02 0.019 1.31 2.02 0.518 1.31 2.02
64 × 64 0.023 1.33 2.14 0.065 1.33 2.14 0.808 1.33 2.14
128 × 128 0.024 1.33 2.17 0.210 1.33 2.17 0.921 1.33 2.17

to match that of AFC + AFFAFC , allowing for interpolation to a fine-grid point from both directly connected C points and C
points that are directly connected to an adjacent F point. At the same time, we replace relaxation based on a diagonal stencil
with relaxation using the SPAI approximation to A−1FF with the sparsity pattern of AFF .
To test the effects of these modifications, we again consider the anisotropic diffusion equation given in (7), for three angles,

� = 0, �∕6, and �∕4, with convergence factors shown in Table 2. To decouple the impact of these choices from that of the
coarsening, we use a geometric coarse grid chosen as semi-coarsening by a factor of three in the y-direction (the direction
of strong connections in these cases). We observe significant improvement in convergence in both the � = 0 and � = �∕6
cases, in comparison to the results in Table 1, although performance for � = �∕4 is much worse. Yet, we also note that the
complexity of these cycles is high, with two-grid operator complexities above 2.0 due to many small nonzero entries in the
resulting interpolation operators that lead to large numbers of nonzero entries in the Galerkin coarse-grid operator, P TAP .
Strong connections: To address the high cost encountered in the baseline, we introduce strong connections into the algorithm.

A typical row in the matrix for an anisotropic diffusion operator contains both small entries and large but “wrong-sign” entries,
where there are positive contributions in directions other than the strong direction of diffusion in the PDE. In response, we
introduce a filtering stage, where we compute a proxy matrix, Â, for the given system matrix, A. We first compute strong
connections using the classical Ruge-Stüben definition of strength of connection, defining point i to be strongly connected to
point j if

−Aij ≥
1
2
max
k≠i

−Aik, (9)
where a strength parameter of 1/2 is selected as is typical for anisotropic PDEs and where only negative off-diagonal entries are
allowed as strong connections (also common practice).
For anisotropic diffusion equations discretized by bilinear finite elements on uniform grids, (9) results in two strong con-

nections for each interior node, aligned vertically (north and south), for � = 0, two strong connections in the north-east and
south-west directions for � = �∕4, but four strong connections for � = �∕6, including north, south, north-east, and south-west
points. To preserve the row-sum that is typically needed for best AMG performance, we define Â to have off-diagonal entries
matching those of A for strong connections, and diagonal entries adjusted by subtracting any weak connections in each row of
A from its diagonal value (so-called “lumping” of the weak connections to the diagonal, as in (2)).
Next, we repeat the experiments above, but define interpolation as the SPAI approximation to Â−1FF ÂFC and use F -relaxation

based on the SPAI approximation to Â−1FF , with results presented in Table 3. For � = 0 and � = �∕4, each F -point has a single
strongly-connected C neighbor and a single strongly-connected F neighbor, while each F -point for � = �∕6 has two of each.
Using semi-coarsening in the y-direction by a factor of three, this results in interpolation to each F -point from two C-points for
� = 0 and �∕4 and from five C-points for � = �∕6 (where the two strongly connected F neighbors of an F -point have a total of
three strongly connected C neighbors). From the table, we see that using this definition of strength results in improved and grid-
independent convergence for the case of � = �∕4, and degraded (but still grid-independent) convergence for � = 0. However,
significant degradation in convergence occurs for the case of � = �∕6. Nonetheless, the use of strong conenctions has greatly
improved the two-grid operator complexities, particularly for the � = 0 case, where it now matches that of geometric multigrid.
Interpolation Scaling: Tables 2 and 3 underscore the potential of SPAI-based AMGr for anisotropic diffusion equations,

but also highlight that acceptable and scalable convergence is not robust. From the poor convergence for � = �∕6 in Table 3,
we found that even if the “lumped” matrix, Â, used to form interpolation retains the property that rows away from boundary
conditions have zero row sum (and that Â is an M-matrix), the interpolation operator determined by SPAI does not accurately
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TABLE 3 Two-level AMGr convergence factors for anisotropic FE discretization using semi-coarsening in the y direction by a
factor of three. Interpolation ofF -nodes is based on a SPAI approximation to Â−1FF ÂFC and relaxation uses a SPAI approximation
to Â−1FF , where Â is the “lumped” matrix of strong connections computed from A.

� = 0 � = �∕6 � = �∕4
Grid size � Cgrid Cop � Cgrid Cop � Cgrid Cop
16 × 16 0.351 1.31 1.28 0.289 1.31 1.60 0.696 1.31 1.42
32 × 32 0.359 1.31 1.30 0.487 1.31 1.66 0.718 1.31 1.47
64 × 64 0.359 1.33 1.32 0.745 1.33 1.73 0.716 1.33 1.52
128 × 128 0.359 1.33 1.32 0.906 1.33 1.75 0.716 1.33 1.53

TABLE 4 Two-level AMGr convergence factors for anisotropic FE discretization using semi-coarsening in the y direction by
a factor of 3. Here, F -nodes are interpolated using the SPAI approximation to Â−1FF ÂFC , postprocessed to exactly interpolate
the constant vector, and the SPAI approximation to Â−1FF is used for relaxation, where Â is the “lumped” matrix of strong
connections computed from A.

� = 0 � = �∕6 � = �∕4
Grid size � Cgrid Cop � Cgrid Cop � Cgrid Cop
16 × 16 0.751 1.31 1.28 0.641 1.31 1.60 0.765 1.31 1.42
32 × 32 0.776 1.31 1.30 0.640 1.31 1.66 0.751 1.31 1.47
64 × 64 0.772 1.33 1.32 0.649 1.33 1.73 0.744 1.33 1.52
128 × 128 0.772 1.33 1.32 0.656 1.33 1.75 0.741 1.33 1.53

interpolate the coarse-grid constant function onto the fine-grid. This is not surprising, since SPAI computes the interpolation
operator column-wise, yet interpolation to any fixed fine-grid vector is a row-wise property of matrix P .
To address the lack of constant interpolation, we post-process the interpolation generated by SPAI, using left diagonal scal-

ing of W ≈ Â−1FF ÂFC so that 1F = SW 1C . This is accomplished by computing s = W 1C , followed by defining diagonal
matrix S with entries 1∕si on its diagonal. This yields the convergence factors in Table 4. The results offer concrete improve-
ment over Tables 2 and 3, in that they offer scalable convergence for all three problems (without increasing grid or operator
complexities). Even so, the overall convergence factors between 0.65 and 0.8 are insufficient to be considered an effective AMG
solver.
One possible cause of the degraded convergence is poor interpolation near Dirichlet boundaries, where the constant vector is

not an accurate indicator of the slowest-to-converge modes of relaxation. As a remedy, we use a similar scaling of interpolation,
that we refer to as “improved iteration” scaling, running a set number of sweeps of (full grid) weighted Jacobi relaxation on
the homogeneous problem with the constant vector as an initial guess, to produce a relaxed vector, z, and followed by a similar
diagonal scaling computed to ensure that zF = SW zC . With this modification and five sweeps of relaxation, Table 5 shows
notable improvement in performance for both the case of � = 0 and � = �∕6, but still disappointing (albeit grid-independent)
convergence for � = �∕4.
C-relaxation: As a final modification we employ the use of C-relaxation alongside F -relaxation. As has been considered

in MGRIT24 and other contexts, replacing simple F -relaxation with sweeps of FCF -relaxation (that is, relaxation over the
F -points, followed by relaxation over the C-points, then again over the F -points, with updated residual values between each
sweep) is known to greatly improvemultigrid performance in some settings. Results usingFCF -relaxation are shown in Table 6,
where C-relaxation is again computed with SPAI on ÂCC . We see that including C-relaxation results in a dramatic effect for
� = �∕4, reducing the convergence factor to nearly 0.1, and a notable effect for � = 0. For � = �∕6, adding C-relaxation has
little influence on convergence, noting it does not harm performance.
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TABLE 5 Two-level AMGr convergence factors for anisotropic FE discretization using semi-coarsening in the y direction by a
factor of 3. Here, F -nodes are interpolated using the SPAI approximation to Â−1FF ÂFC , postprocessed to exactly interpolate a
relaxed vector, and the SPAI approximation to Â−1FF is used for relaxation, where Â is the “lumped” matrix of strong connections
computed from A.

� = 0 � = �∕6 � = �∕4
Grid size � Cgrid Cop � Cgrid Cop � Cgrid Cop
16 × 16 0.379 1.31 1.28 0.177 1.31 1.60 0.720 1.31 1.42
32 × 32 0.382 1.31 1.30 0.197 1.31 1.66 0.719 1.31 1.47
64 × 64 0.379 1.33 1.32 0.256 1.33 1.73 0.717 1.33 1.52
128 × 128 0.377 1.33 1.32 0.284 1.33 1.75 0.717 1.33 1.53

TABLE 6 Two-level AMGr convergence factors for anisotropic FE discretization using semi-coarsening in the y direction by
a factor of 3. Here, F -nodes are interpolated using the SPAI approximation to Â−1FF ÂFC , postprocessed to exactly interpolate a
relaxed vector, and the SPAI approximations to Â−1FF and Â−1CC are used for FCF -relaxation, where Â is the “lumped” matrix
of strong connections computed from A.

� = 0 � = �∕6 � = �∕4
Grid size � Cgrid Cop � Cgrid Cop � Cgrid Cop
16 × 16 0.233 1.31 1.28 0.107 1.31 1.60 0.110 1.31 1.42
32 × 32 0.238 1.31 1.30 0.186 1.31 1.66 0.111 1.31 1.47
64 × 64 0.240 1.33 1.32 0.249 1.33 1.73 0.115 1.33 1.52
128 × 128 0.239 1.33 1.32 0.279 1.33 1.75 0.114 1.33 1.53

4.1 Algebraic Coarsening
Given the satisfactory results in Table 6, we next focus on extending these results to fully algebraic coarsening using the simulated
annealing coarsening described in Section 2.2.1. We note that this coarsening is computationally quite expensive19, but that it
provides the best known complexities for AMGr-style methods. In Section 5.4, we experiment with the more feasible greedy
coarsening algorithm of MacLachlan and Saad16. An important consideration in assessing the quality of algebraic coarsening is
the resulting complexity of the multigrid algorithm, as this is no longer determined a priori from the fixed geometric coarsening.
We use two common measures: grid and operator complexity. The AMG grid complexity, Cgrid, is the ratio of the sum of the
number of DoFs on each level of multigrid hierarchy (including the finest) to that on the finest level. Similarly, the operator
complexity, Cop, is the ratio of the sum of the number of nonzeros in the system matrices on each level of hierarchy (including
the finest) to that on the finest level.
Algebraic coarsening: Tables 7 and 8 show the convergence factors and corresponding grid and operator complexities for

two-grid cycles using two values of the diagonal dominance parameter in (6). From preliminary experiments (not reported here),
we noted substantial improvement when computing the fine-coarse partitioning using Â (compared with A); hence, we use Â in
all subsequent results.
Table 7 uses � = 0.65, resulting in two-level grid complexities, Cgrid ≈ 4∕3, matching that of the geometric semi-coarsening

by three used above. Using a larger parameter, � = 0.75, in Table 8, results in Cgrid ≈ 3∕2, consistent with geometric semi-
coarsening by a factor of two. The coarsening is visualized in Figure 1 for both cases and � = 0, demonstrating that, while the
coarsening is still algebraic, it retains much of the geometric character of semi-coarsening. As expected, using a larger value
of � leads to an improvement in convergence factors (since the coarse-grid correction is over a larger space), but also higher
complexities. In particular, for the case of � = 0, we maintain complexities similar to those of geometric multigrid for these
problems, with Cop ≈ Cgrid, but we also see the typical increase in AMG operator complexity faster than grid complexity for
� = �∕6 and �∕4, indicating increased density in the coarse-grid operators. While the effective convergence factors, defined as
�1∕Cop , are lower for � = 0.75 than � = 0.65, we emphasize that these are only two-grid complexities, and denser coarse-grid
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TABLE 7 Two-level AMGr convergence factors and corresponding complexities for anisotropic FE discretization using simu-
lated annealing coarsening with � = 0.65. F -nodes are interpolated using the SPAI approximation to Â−1FF ÂFC , postprocessedto exactly interpolate a relaxed vector, and the SPAI approximations to Â−1FF and Â−1CC are used for FCF -relaxation, where Â is
the “lumped” matrix of strong connections computed from A.

� = 0 � = �∕6 � = �∕4
Grid size � Cgrid Cop � Cgrid Cop � Cgrid Cop
16 × 16 0.219 1.32 1.32 0.110 1.35 1.69 0.116 1.30 1.40
32 × 32 0.235 1.32 1.33 0.189 1.35 1.78 0.114 1.32 1.49
64 × 64 0.234 1.34 1.37 0.342 1.36 1.91 0.121 1.33 1.54
128 × 128 0.231 1.34 1.39 0.400 1.36 1.96 0.133 1.34 1.57

TABLE 8 Two-level AMGr convergence factors and corresponding complexities for anisotropic FE discretization using simu-
lated annealing coarsening with � = 0.75. F -nodes are interpolated using the SPAI approximation to Â−1FF ÂFC , postprocessedto exactly interpolate a relaxed vector, and the SPAI approximations to Â−1FF and Â−1CC are used for FCF -relaxation, where Â is
the “lumped” matrix of strong connections computed from A.

� = 0 � = �∕6 � = �∕4
Grid size � Cgrid Cop � Cgrid Cop � Cgrid Cop
16 × 16 0.168 1.50 1.51 0.106 1.48 1.97 0.062 1.47 1.63
32 × 32 0.174 1.50 1.53 0.176 1.50 2.04 0.069 1.49 1.72
64 × 64 0.182 1.50 1.55 0.227 1.50 2.09 0.075 1.51 1.75
128 × 128 0.189 1.51 1.56 0.260 1.51 2.14 0.075 1.51 1.77

matrices lead to even higher three-grid complexities in the results to follow. Thus, we focus on the choice of � = 0.65 in the
results below.
Interpolation truncation: To attenuate the higher complexities observed in Tables 7 and 8, we employ interpolation trun-

cation, which is used successfully in several AMG settings28–30. In our approach, we first use SPAI (with a sparsity pattern of
ÂFC + ÂFF ÂFC ) to computeW ≈ Â−1FF ÂFC . Then, we sweep row-wise throughW , dropping entries that are less than a factor
of � of the largest entry (by absolute value) in the row, to yield Ŵ . As a final step, we compute matrix S to match interpolation
to the relaxed vector, z, so that zF = SŴ zC . Table 9 shows results using � = 0.2. For the cases of � = 0 and �∕4, we see
that this truncation has no real effect in comparison with results in Table 7. This is easily understood from the nature of strong
connections in these matrices, with only two strong connections per row, so there are only two interpolation weights in a typi-
cal row, and these weights are roughly equal in size. In such cases, no effects of this truncation are expected. For � = �∕6, we
see that this truncation leads to slight improvements in operator complexities, with small effects on convergence factors. While
the savings here may be minimal, we show below that interpolation truncation is an important tool in other cases, such as the
isotropic Poisson problem in Section 5.1. We also note that further increasing the truncation parameter to � = 0.25 starts to
show significantly degraded performance for � = �∕6, when “too many” connections in interpolation are truncated.
Tables 10 and 11 compare no-interpolation truncation, equivalent to � = 0, to that of truncation with � = 0.2 for three-level

cycles for these problems. As expected, adding more levels to the hierarchy increases the grid and operator complexities. Using
two-level geometric semi-coarsening-by-threes as a reference, we expect to see Cgrid ≈ 1 + 1

3
+ 1

9
≈ 1.44, which we do in

all cases (with a slight increase for � = �∕6, undoubtedly due to increased density of the coarse-grid operators). We note that
convergence does degrade going from two-grid to three-grid cycles, particularly for V-cycles (with convergence factors denoted
by �V ), but also for W-cycles (with convergence factors denoted by �W ). Again, the effects of truncation are minimal for � = 0
and �∕4, with some noticeable, but small, changes for �∕6.
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FIGURE 1 Algebraic coarse-fine partitionings for the FE discretization of anisotropic-diffusion with � = 0 on uniform 32 × 32
grid. At left, partitioning with � = 0.65. At right, partitioning with � = 0.75. Fine-grid DoFs (points in Ω) are denoted by filled
grey dots; those that are in C are marked with black circles.

TABLE 9 Two-level AMGr convergence factors and corresponding complexities for anisotropic FE discretization using simu-
lated annealing coarsening with � = 0.65. F -nodes are interpolated using the SPAI approximation to Â−1FF ÂFC , postprocessedto exactly interpolate a relaxed vector, and the SPAI approximations to Â−1FF and Â−1CC are used for FCF -relaxation, where Â is
the “lumped” matrix of strong connections computed from A. Interpolation truncation with � = 0.2 is used.

� = 0 � = �∕6 � = �∕4
Grid size � Cgrid Cop � Cgrid Cop � Cgrid Cop
16 × 16 0.219 1.32 1.32 0.107 1.35 1.68 0.116 1.30 1.40
32 × 32 0.235 1.32 1.33 0.194 1.35 1.77 0.114 1.32 1.49
64 × 64 0.234 1.34 1.37 0.364 1.36 1.88 0.121 1.33 1.54
128 × 128 0.231 1.34 1.39 0.408 1.36 1.93 0.133 1.34 1.57

4.2 The Generalized AMGr algorithm
Before presenting more extensive numerical results, we summarize the outcome of the experiments above in algorithmic form.
Algorithm 4 presents the AMGr setup algorithm: we compute the lumped matrix, Â, after finding strong connections, construct
the F -C partitioning based on Â, then form interpolation and the Galerkin coarse-grid operator. In addition, we compute SPAI
approximations to the inverses of ÂFF and ÂCC , for use in relaxation, using (A) to denote the sparsity pattern of matrix
A. As in the original AMGr paper, we use weighted relaxatio, with optimal weights for single-step relaxation on the F and
C subproblems, computed based on eigenvalue estimates for the “preconditioned” matrices, Dinv

FFAFF and Dinv
CCACC . For thecoarse-grid problem, the computed eigenvalues are very close to one in all cases, and replacing the weighted relaxation with

unweighted relaxation (approximating �C = 1) has little effect on convergence. For the fine-grid relaxation, we find more
variation in �min and �max; we explore more practical alternatives to determining relaxation weights in Section 5.4, although
note that it may also be possible to choose better weights row-wise (e.g., by using weighting similar to the l1-Jacobi relaxation
method58 or the matrix S determined for interpolation).
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TABLE 10 Three-levelAMGr convergence factors and corresponding complexities for anisotropic FE discretization using sim-
ulated annealing coarsening with � = 0.65. F -nodes are interpolated using the SPAI approximation to Â−1FF ÂFC , postprocessedto exactly interpolate a relaxed vector, and the SPAI approximations to Â−1FF and Â−1CC are used for FCF -relaxation, where Â is
the “lumped” matrix of strong connections computed from A.

� = 0 � = �∕6 � = �∕4
Grid size �V �W Cgrid Cop �V �W Cgrid Cop �V �W Cgrid Cop
16 × 16 0.238 0.221 1.40 1.36 0.169 0.116 1.46 1.92 0.158 0.116 1.41 1.57
32 × 32 0.240 0.235 1.42 1.41 0.393 0.248 1.47 2.18 0.320 0.114 1.43 1.70
64 × 64 0.243 0.234 1.45 1.49 0.537 0.394 1.49 2.36 0.448 0.224 1.45 1.79
128 × 128 0.267 0.231 1.46 1.52 0.656 0.502 1.50 2.44 0.541 0.310 1.47 1.88

TABLE 11 Three-levelAMGr convergence factors and corresponding complexities for anisotropic FE discretization using sim-
ulated annealing coarsening with � = 0.65. F -nodes are interpolated using the SPAI approximation to Â−1FF ÂFC , postprocessedto exactly interpolate a relaxed vector, and the SPAI approximations to Â−1FF and Â−1CC are used for FCF -relaxation, where Â is
the “lumped” matrix of strong connections computed from A. Interpolation truncation with � = 0.2 is employed.

� = 0 � = �∕6 � = �∕4
Grid size �V �W Cgrid Cop �V �W Cgrid Cop �V �W Cgrid Cop
16 × 16 0.238 0.220 1.40 1.36 0.175 0.113 1.46 1.85 0.153 0.116 1.41 1.57
32 × 32 0.248 0.235 1.42 1.41 0.359 0.231 1.47 2.06 0.323 0.114 1.44 1.70
64 × 64 0.243 0.234 1.45 1.49 0.556 0.411 1.49 2.24 0.437 0.215 1.46 1.79
128 × 128 0.262 0.231 1.46 1.52 0.670 0.542 1.50 2.31 0.534 0.298 1.47 1.87

Algorithm 4 Generalized AMGr Setup Phase
1: function GEN-AMGR-SETUP(A, b)
2: Â← lumped approximation to A after removing weak connections
3: C, F ← partitioning based on Â
4: ÂFF , ÂFC , ÂCC ← extract submatrices of Â based on F and C
5: P ← INTERPOLATION(Â, ÂFF , ÂFC , F , C)
6: AC ← P TAP
7: Dinv

FF ← SPAI(ÂFF , IFF ,
(

ÂFF
)

)
8: �min, �max ← minimum and maximum eigenvalues of Dinv

FFAFF
9: �F ← 2∕(�min + �max)
10: Dinv

CC ← SPAI(ÂCC , ICC ,
(

ÂCC
)

)
11: �min, �max ← minimum and maximum eigenvalues of Dinv

CCACC
12: �C ← 2∕(�min + �max)
13: return F , C, P , AC , Dinv

FF , �F , D
inv
CC , �C

14: end function

The interpolation operator is computed following Algorithm 5. First, the nonzero pattern is determined for interpolation,
followed by a SPAI approximation to Â−1FF ÂFC for this pattern. Small entries may be truncated in W at this stage in order to
reduce complexity of the resulting cycle. After truncation, we rescale interpolation row-wise, either using constant scaling, as
in Algorithm 6, or the improved iteration scaling, as in Algorithm 7.
Finally, we present the two-level AMGr solution phase in Algorithm 8. This includes either F - or FCF -relaxation both before

and after the coarse-grid correction phase, as well as a standard Galerkin coarse-grid correction. While we present the algorithm
without implementation details, we note that the algorithms here can be implemented in either the “natural” ordering of matrix
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Algorithm 5 Interpolation Operator
1: function INTERPOLATION(Â, ÂFF , ÂFC , F , C)
2:  ← 

(

ÂFC + ÂFF ÂFC
)

3: W ← SPAI(ÂFF , ÂFC ,)
4: W ← W after truncating small entries
5: if improved iteration scaling to be used then
6: W ← IMPROVED-ITERATION-SCALING(Â,W , F , C)
7: else
8: W ← CONSTANT-SCALING(W ,F , C)
9: end if
10: P ←

[

W
I

]

11: return P
12: end function

Algorithm 6 Constant Scaling
1: function CONSTANT-SCALING(W ,F , C)
2: s ← 1F∕(W 1C ) ⊳ Componentwise division
3: S ← matrix with s on diagonal and elsewhere 0
4: W ← SW
5: returnW
6: end function

Algorithm 7 Improved Iteration Scaling
1: function IMPROVED-ITERATION-SCALING(Â,W , F , C)
2: nwj ← 5, !← 2∕3, D ← diagonal of Â
3: z ← 1
4: for i← 1,… , nwj do
5: z ← (I − !D−1Â)z
6: end for
7: s ← zF∕(W zC ) ⊳ Componentwise division
8: S ← matrix with s on diagonal and elsewhere 0
9: W ← SW
10: returnW
11: end function

A, or in the “permuted” ordering given in (3). In many ways, it is simpler to implement the algorithm after permuting A into its
F -C ordering.

5 RESULTS

While the algorithms given above were derived by focusing on performance for finite-element discretizations of anisotropic dif-
fusion equations on uniform grids, we emphasize in this section that this methodology appears to have much wider applicability.
Here, we first evaluate the approach on isotropic diffusion equations, on both structured and unstructured grids. Furthermore,
we consider results for a classic “four-quadrant” problem, with piecewise constant diffusion and reaction coefficients on a uni-
form grid, and for constant-coefficient anisotropic diffusion on an unstructured grid. In all results before Section 5.4, we use the
simulated annealing coarsening algorithm described above with � = 0.65.
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Algorithm 8 Generalized AMGr Solution Phase
1: function TWO-LEVEL(A, b, u, F , C, P , AC , Dinv

FF , �F , D
inv
CC , �C )

2: u ← F -relaxation on Au = b
3: if C-relaxation to be used then
4: u ← C-relaxation on Au = b
5: u ← F -relaxation on Au = b
6: end if
7: rC ← P T (b − Au)
8: eC ← solution of ACeC = rC
9: u ← u + P eC
10: u ← F -relaxation on Au = b
11: if C-relaxation to be used then
12: u ← C-relaxation on Au = b
13: u ← F -relaxation on Au = b
14: end if
15: return u
16: end function

TABLE 12 AMGr convergence factors and complexities for isotropic FE discretization on structured grids. Results for
classical (diagonalDFF ) AMGr appear in the first block column, followed by those for the two-level and three-level SPAI-based
algorithm in Section 4.2 in following block columns, using � = 0.

Classical Two-level cycle Two-level cycle Three-level cycles
Grid size � Cgrid Cop � Cgrid Cop �V �W Cgrid Cop
16 × 16 0.365 1.36 1.71 0.041 1.36 2.22 0.097 0.044 1.49 2.46
32 × 32 0.375 1.38 1.80 0.041 1.38 2.64 0.094 0.042 1.53 3.07
64 × 64 0.373 1.40 1.86 0.039 1.40 2.86 0.102 0.042 1.55 3.37
128 × 128 0.367 1.41 1.90 0.040 1.41 2.97 0.120 0.042 1.57 3.54

5.1 Isotropic Poisson problem
In this section, we consider the isotropic diffusion equation −Δu = f , with Dirichlet boundary conditions, first on uniform
meshes of the unit square domain. As a benchmark, the first block column in Table 12 presents convergence for the classical
AMGr algorithm using a diagonal approximation, DFF , to AFF in both relaxation and interpolation with only F -relaxation.
We note that using � = 0.65 already yields a positive effect on convergence; using � = 0.56 (as considered in past work)
leads to convergence factors around 0.7, instead of 0.37. In either case, while the convergence factors are bounded away from
unity independently of grid size, the convergence is suboptimal for AMG on the model Poisson equation on a uniform grid.
The remaining columns of Table 12 present results for the algorithm of Section 4.2, demonstrating substantial improvement
in two-grid convergence and reasonable three-level convergence. We also note that the two-level generalized AMGr algorithm
using F -relaxation in place of FCF -relaxation also offers reasonable convergence factors of about 0.1. Here, we see that while
the grid complexities for these cycles are relatively reasonable, the operator complexities are high, above 3.0 for most of the
three-level cycles.
To reduce the computational complexities, we truncate the smaller elements in the interpolation operator as discussed above.

A critical question in using interpolation truncation is the choice of the value of parameter � . The left plot of Figure 2 shows
the effects of varying this parameter for the 32× 32 uniform grid. For small values of � , we observe large complexities, but also
excellent two-level convergence factors. As � increases past 0.2, so do the convergence factors, yet the complexity continues
drop. If we were solely concerned with convergence, we might conclude that this is the optimal value of � , since it yields the
lowest complexity while retaining the best-possible convergence factor. However, to better balance cost vs. complexity, we prefer
to take � = 0.25, where we approximately minimize the two-level complexity, while still retaining an acceptable convergence
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FIGURE 2 Trade-off between two-level convergence factor and operator complexities as a function of � , for isotropic Poisson
on a uniform 32 × 32 grid (at left) and on the unstructured triangulation with 1433 DoFs (at right).

TABLE 13 AMGr convergence factors and complexities for isotropic FE discretization on structured grids, using the two-level
and three-level SPAI-based algorithm in Section 4.2, with � = 0.25.

Two-level cycle Three-level cycles
Grid size � Cgrid Cop �V �W Cgrid Cop
16 × 16 0.053 1.36 1.73 0.099 0.058 1.49 1.90
32 × 32 0.061 1.38 1.84 0.140 0.071 1.52 2.07
64 × 64 0.065 1.40 1.91 0.151 0.074 1.55 2.20
128 × 128 0.069 1.41 1.95 0.157 0.079 1.56 2.26

factor. Table 13 shows two- and three-grid performance as we vary grid size with � = 0.25. We see substantial improvements
in complexity, with two-level complexities now similar to those of the classical AMGr algorithm in Table 12, and three-level
grid complexities now about 2.2, instead of over 3.0. At the same time, excellent two-level convergence factors are maintained,
and there is only a slight impact on three-level convergence factors.
An important consideration for algebraic multigrid methods is whether or not they retain their performance as we transition

from structured to unstructured grids. Hence, our next problem considers the same isotropic diffusion operator, but discretized
using piecewise linear finite elements on unstructured triangulations of the square domain, [−1, 1]2. We construct grids by
starting from an unstructured grid, performing several steps of uniform refinement, then smoothing the resulting grids. Here,
we consider three levels of refinement, generating meshes with 1433, 5617, and 22 241 DoFs. We again study the effects of
varying the truncation parameter, � , at right of Figure 2, and conclude that taking � = 0.25 again gives a good trade-off between
convergence and complexity. Table 14 shows the resulting two- and three-grid convergence factors and operator complexities
for the new AMGr algorithm applied to these problems. While the convergence factors are somewhat larger than those for
the uniform-grid discretization, they remain acceptable for AMG convergence for an isotropic diffusion operator. Furthermore,
we see the efficacy of interpolation truncation in reducing the operator complexity while maintaining acceptable convergence
factors.

5.2 Four-quadrant problems
Next, we consider a family of two-dimensional anisotropic diffusion problems by adding a reaction term to Equation (7), giving

−∇ ⋅K(x, y)∇u(x, y) + c(x, y)u(x, y) = b(x, y) (10)
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TABLE 14 AMGr convergence factors and complexities for isotropic FE discretization on unstructured grids, using the two-
level and three-level SPAI-based algorithm in Section 4.2. Results in the left-most block column show two-level results with no
interpolation truncation (� = 0), while the other block columns show results with � = 0.25.

without truncation with interpolation truncation
Two-level cycle Two-level cycle Three-level cycles

#DoF � Cgrid Cop � Cgrid Cop �V �W Cgrid Cop
1433 0.046 1.36 2.56 0.063 1.36 1.80 0.155 0.064 1.50 2.17
5617 0.135 1.36 2.53 0.132 1.36 1.75 0.167 0.127 1.50 2.17
22241 0.167 1.37 2.49 0.167 1.37 1.78 0.322 0.186 1.52 2.22

in the domain [0, 1] × [0, 1] with Dirichlet boundary conditions. The tensor coefficient is chosen as K(x, y) = QHQT , where
Q =

[

cos(�) − sin(�)
sin(�) cos(�)

]

, andH =
[

1 0
0 �

]

, where � specifies the direction of anisotropy in the problem and � specifies its strength.
We note that the convention for H used here is different than that in Equation (8), to make the problems consistent with those
used in other works. We partition the domain [0, 1] × [0, 1] into four equal quadrants and consider constant values of �, � and
c within each quadrant, but with different values in different quadrants of the domain. The four-quadrant problem is common
in AMG literature, and we consider three different problems within this class, with coefficient values shown below in Figure 3.
Problem 1 is similar to the problem in Chapter 8 in the book by Briggs, Henson, and McCormick59, with no reaction term, large
contrasts in the anisotropy strength, and non-grid-aligned diffusion in just one quadrant. Problem 2 is the 2D-4Reg problem
from Brannick and Falgout60, with a large reaction coefficient in one quadrant, but a small contrast in anisotropy strength and
only grid-aligned anisotropy. Finally, Problem 3 is constructed to provide a more significant challenge, including a large reaction
coefficient in one quadrant, a large contrast in anisotropy strength, and anisotropy directions in two quadrants that are neither
aligned with the grid nor with the grid diagonal.
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FIGURE 3 Visualization of the strong connections for the four-quadrant problems; Problem 1 (left), Problem 2 (middle), and
Problem 3 (right).

Two-level and three-level AMGr performance for these problems is shown in Tables 15 and 16, respectively. We note that
the two-level performance for Problems 1 and 2 is generally good, both in terms of convergence factor and complexity, while
Problem 3 is clearly a harder problem. Indeed, both V- and W-cycle convergence continues to perform well for Problem 2 in the
three-level results in Table 16, with convergence outperforming that reported for the 65 × 65 grid in Table 4.2 in Brannick and
Falgout60, with comparable grid and operator complexities to the compatible relaxation AMG solver proposed there, and much
better complexities than those reported there for BoomerAMG5. Problem 3 is clearly more taxing for AMG, yet the proposed
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TABLE 15 Two-level AMGr convergence factors and complexities for the four-quadrant problem using the SPAI-based
algorithm in Section 4.2, with � = 0.25.

Problem 1 Problem 2 Problem 3
Grid size � Cgrid Cop � Cgrid Cop � Cgrid Cop
17 × 17 0.388 1.35 1.49 0.602 1.26 1.32 0.062 1.25 1.38
33 × 33 0.433 1.34 1.51 0.581 1.26 1.37 0.266 1.33 1.62
65 × 65 0.413 1.36 1.56 0.595 1.27 1.41 0.491 1.39 1.78
129 × 129 0.420 1.36 1.57 0.599 1.36 1.60 0.692 1.39 1.80

TABLE 16 Three-level AMGr convergence factors and complexities for the four-quadrant problem using the SPAI-based
algorithm in Section 4.2, with � = 0.25.

Problem 1 Problem 2 Problem 3
Grid size �V �W Cgrid Cop �V �W Cgrid Cop �V �W Cgrid Cop
17 × 17 0.404 0.390 1.48 1.65 0.608 0.602 1.34 1.39 0.095 0.064 1.32 1.44
33 × 33 0.474 0.440 1.46 1.68 0.584 0.581 1.35 1.48 0.314 0.273 1.43 1.78
65 × 65 0.523 0.422 1.49 1.77 0.598 0.595 1.36 1.54 0.539 0.499 1.52 2.05
129 × 129 0.599 0.433 1.49 1.80 0.604 0.600 1.46 1.75 0.740 0.702 1.54 2.12

TABLE 17 Two- and three-level AMGr convergence factors and complexities for the anisotropic diffusion problem on
unstructured meshes using the SPAI-based algorithm in Section 4.2, with � = 0.25.

Two-level cycle Three-level cycles
#DoF � Cgrid Cop �V �W Cgrid Cop
798 0.516 1.35 1.64 0.586 0.534 1.49 1.95
3109 0.607 1.37 1.64 0.676 0.621 1.51 1.99
12273 0.601 1.37 1.65 0.707 0.639 1.51 2.01

generalized AMGr approach offers acceptable convergence in all cases. Whether further improvement to these results is possible
(or the performance degradation with grid size can be attenuated using Krylov acceleration) is left for future work.

5.3 Unstructured anisotropic diffusion
Next, we consider the anisotropic diffusion problem in (10) with Dirichlet boundary conditions, c = 0, � = �∕3, and � = 0.01,
on an unstructured triangulation of the unit square taken from Brannick and Falgout60, where the problem is labeled as 2D-M2-
RLap. As in Table 4.2 from Brannick and Falgout60, we consider three refinements of the unstructured mesh for this problem,
yielding discretized problems with 798, 3109, and 12 273DoFs, respectively. The mesh containing 798DoFs (and its coarsening
using � = 0.65) is shown in Figure 4. Table 17 presents two- and three-level convergence results for the generalized AMGr
algorithm applied to this problem. For comparison, we note that Table 4.2 of Brannick and Falgout60 reports higher convergence
factors (up to 0.95 on the finest grid) for CR-AMGapplied to this problem, but at lower grid and operator complexities. Compared
to the BoomerAMG results presented in the same table, we see comparable convergence (0.57 for the finest grid) at lower
complexity (2.6 at the finest grid, albeit for a multilevel cycle, not a three-level cycle). Compared to classical AMGr applied to
this problem, as given in Table 6 of Zaman et al.19, we see substantial improvement in convergence factors (compared to values
of 0.8–0.9 on the finest grid) and lower complexities in these results.
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FIGURE 4 Unstructured triangulation containing 798 points from Brannick and Falgout60, and its partitioning using � = 0.65.
Fine-grid DoFs (points in Ω) are denoted by filled grey dots; those that are in C (282 points) are marked with black circles.

5.4 Multilevel Results
Two major obstacles remain in Algorithm 4 for transitioning from the two- and three-level cycles studied above to standard
multilevel cycles. First of all, we have (until now) focused on the use of simulated annealing for determining the partitioning
of A and Â into the F and C sets. While this is very effective, it is also very costly, as many SA steps are required to generate
near-optimal partitionings using this algorithm. Thus, we switch here to using the greedy coarsening algorithm of MacLachlan
and Saad16, which is much more efficient, but generates poorer-quality partitions. To compensate, we investigate the effect of
the diagonal dominance parameter, �, on the complexities and convergence of the resulting multilevel hierarchies, in order to
attenuate some of the complexity growth that we observe in the initial results.
The second major obstacle is the calculation of extremal eigenvalues in Lines 8 and 11 of Algorithm 4, which has additional

heavy computational cost. To eliminate this, we replace the optimal calculation of �F and �C with a common heuristic estimate
of the optimal regularization parameter. Knowing thatAFF andACC are both positive-definite matrices, we expect thatDinv

FF and
Dinv
CC are as well. If this is the case, the spectra of Dinv

FFAFF and Dinv
CCACC are guaranteed to be contained in the intervals from 0

to their largest eigenvalues, which can be estimated by their maximum absolute row sums (using Geršgorin’s theorem). While
the F -relaxation originally used in AMGr targets an optimal reduction over all modes by estimating both ends of the spectrum
of Dinv

FFAFF , we propose a simpler heuristic of choosing �F and �C to be 3∕2 divided by the maximum absolute row sum of
Dinv
FFAFF and Dinv

CCACC , respectively. The choice of weight 3∕2 in this heuristic reflects the expectation that these matrices are
well-conditioned, so we need not use a weight as large as 2 (which would be optimal if we estimate the smallest eigenvalues as
0), but that they are far from perfectly conditioned, so the weight should be larger than 1. Numerical tests confirm that using
weight 3∕2 is a good compromise — in some cases, some improvements are possible with larger weights, but this leads to
greatly degraded performance in some cases as well.
As a comparison with the final three-level results in Table 11. Table 18 shows convergence factors, complexities, and number

of levels in the multigrid hierarchies (nl) for the multilevel algorithm. These results show notable degradation in both operator
and grid complexities, due to the use of greedy coarseningwith � = 0.65 in contrast with the simulated annealing coarsening used
in the previous results. Nonetheless, we observe excellent W-cycle convergence factors in all cases (outperforming the earlier
results for � = 0 and � = �∕6), and consistent V-cycle convergence factors. In experiments not reported here, we compared
convergence to the case of using exact eigenvalues and found little difference in convergence overall. Notably, when using the
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TABLE 18 Multi-level AMGr convergence factors and corresponding complexities for anisotropic FE discretization using
greedy coarsening with � = 0.65. F -nodes are interpolated using the SPAI approximation to Â−1FF ÂFC , postprocessed to
exactly interpolate a relaxed vector, and the SPAI approximations to Â−1FF and Â−1CC are used for FCF -relaxation, where Â is the
“lumped” matrix of strong connections computed from A. Interpolation truncation with � = 0.2 is employed. Estimates of the
eigenvalues are used in relaxation.

� = 0 � = �∕6 � = �∕4
Grid size �V �W Cgrid Cop nl �V �W Cgrid Cop nl �V �W Cgrid Cop nl
32 × 32 0.205 0.186 1.78 1.73 4 0.312 0.136 1.76 2.24 4 0.383 0.170 1.74 2.11 4
64 × 64 0.230 0.187 1.84 1.81 6 0.515 0.139 1.88 2.50 6 0.460 0.149 1.87 2.45 6
128 × 128 0.232 0.188 1.91 1.88 7 0.641 0.163 1.93 2.64 8 0.668 0.285 1.92 2.61 8
256 × 256 0.242 0.186 1.95 1.93 8 0.722 0.180 1.96 2.72 10 0.740 0.346 1.96 2.72 10

TABLE 19 Multi-level AMGr convergence factors and complexities for the four-quadrant problem using the SPAI-based
algorithm in Section 4.2, with � = 0.25. Greedy coarsening and the heuristic eigenvalue estimates are used.

Problem 1 Problem 2 Problem 3
Grid size �V �W Cgrid Cop nl �V �W Cgrid Cop nl �V �W Cgrid Cop nl
33 × 33 0.541 0.412 1.77 2.08 4 0.429 0.334 1.55 1.73 4 0.202 0.097 1.66 2.17 4
65 × 65 0.602 0.419 1.87 2.30 6 0.435 0.263 1.65 1.92 6 0.414 0.128 1.84 2.59 6
129 × 129 0.698 0.421 1.93 2.43 8 0.323 0.256 1.83 2.34 8 0.621 0.151 1.92 2.82 8
257 × 257 0.783 0.420 1.97 2.49 11 0.367 0.258 1.95 2.63 11 0.769 0.210 1.96 2.95 10

multigrid cycles as preconditioners for conjugate gradient, using the heuristic choice incurs at most 3 additional iterations over
using cycles based on the exact eigenvalue computation.
Similar results are shown in Table 19 for the four-quadrant problems from Section 5.2, for comparison with Table 16. Again,

we note that the complexities are much higher than those reported earlier using the simulated annealing coarsening algorithm,
but that this added complexity pays off in improved multilevel convergence. For Problem 2, we again compare to the results
presented in Table 4.2 by Brannick and Falgout60, and see that this coarsening achieves comparable complexities to those
reported there for 33 × 33 and 65 × 65 grids, but much better convergence. Overall, we again see grid-independent W-cycle
convergence for each problem, but growth in V-cycle convergence factors. When run as preconditioners for CG, we find that
W-cycles lead to convergence in 5–10 iterations (more for Problem 1, fewer for Problems 2 and 3), and V-cycle convergence in
up to 14 iterations (again, with Problem 1 requiring most, and Problem 3 requiring fewest).
Finally, we present results for the anisotropic diffusion problem on unstructured meshes considered in Section 5.3

and Table 17. Here, to explore the connection between the diagonal dominance parameter, �, and the resulting complexities and
convergence factors, we consider � = 0.65 as before, along with � = 0.60 and � = 0.56. Table 20 shows that, as expected,
complexities decrease and convergence factors generally increase as � gets smaller, but that significant improvements in com-
plexity are possible by using smaller � without sacrificing substantial convergence. In particular, comparing results for � = 0.56,
we observe modest increases in grid complexity in comparison with those in Table 17, possibly attributed to the increase from
three-level to multi-level cycles. Comparing these results to that presented in Table 4.2 by Brannick and Falgout60, we observe
complexities better than those reported for BoomerAMG for these problems, albeit with slightly worse convergence, and slightly
worse than those reported for compatible relaxation, but with better convergence.

6 CONCLUSIONS AND FUTUREWORK

Reduction-based AMG methods have been proposed and studied in many settings over the past 15 years, building effective
solvers that can be more closely related to AMG convergence theory than many other heuristic methods. In this paper, we aim to
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TABLE 20 Multi-level AMGr convergence factors and complexities for anisotropic diffusion problem on unstructured
meshes using the SPAI-based algorithm in Section 4.2, with � = 0.25. Greedy coarsening, for three values of �, and the
heuristic eigenvalue estimates are used.

� = 0.56 � = 0.60 � = 0.65
#DoF �V �W Cgrid Cop nl �V �W Cgrid Cop nl �V �W Cgrid Cop nl
798 0.612 0.560 1.54 2.06 4 0.601 0.529 1.66 2.37 4 0.537 0.467 1.76 2.56 4
3109 0.732 0.665 1.66 2.36 5 0.712 0.591 1.77 2.66 6 0.686 0.577 1.90 2.98 6
12273 0.777 0.653 1.71 2.51 7 0.762 0.630 1.83 2.87 8 0.742 0.576 1.98 3.33 9

improve the practical performance of AMGr approaches by targeting tools that can greatly improve performance for anisotropic
diffusion equations. Through extensive numerical results, we show that the combination of using SPAI27, 57 to approximateA−1FFalong with tools to control sparsity leads to effective solvers for both anisotropic and isotropic diffusion operators on structured
and unstructured grids. In our view, this work points to weaknesses in the existing theory for AMGr-type methods, where
approximations to A−1FFAFC have not been considered (to our knowledge) in any context, providing an opportunity for future
work. This may also provide new insights into desirable properties of SPAI-like approximations in this context. Additionally,
further experiments are needed to see how to adapt the methodology proposed here to an even broader set of challenging
problems, including the indefinite Helmholtz equation and convection-dominated flows.
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