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Abstract
Domain decomposition methods (DDMs) are pop-
ular solvers for discretized systems of partial dif-
ferential equations (PDEs), with one-level and
multilevel variants. These solvers rely on several
algorithmic and mathematical parameters, pre-
scribing overlap, subdomain boundary conditions,
and other properties of the DDM. While some
work has been done on optimizing these param-
eters, it has mostly focused on the one-level set-
ting or special cases such as structured-grid dis-
cretizations with regular subdomain construction.
In this paper, we propose multigrid graph neural
networks (MG-GNN), a novel GNN architecture
for learning optimized parameters in two-level
DDMs. We train MG-GNN using a new unsuper-
vised loss function, enabling effective training on
small problems that yields robust performance on
unstructured grids that are orders of magnitude
larger than those in the training set. We show
that MG-GNN outperforms popular hierarchical
graph network architectures for this optimization
and that our proposed loss function is critical to
achieving this improved performance.

1. Introduction
Differential equations are at the core of many important sci-
entific and engineering problems (Gholizadeh et al., 2021;
Han & Lin, 2011), and often, there is no analytical solution
available; hence, researchers utilize numerical solvers (Vos
et al., 2002; Gholizadeh et al., 2023). Among numerical
methods for solving the systems of equations obtained from
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discretization of partial differential equations (PDEs), do-
main decomposition methods (DDMs) are a popular ap-
proach (Toselli & Widlund, 2005; Quarteroni & Valli, 1999;
Dolean et al., 2015). They have been extensively studied
and applied to elliptic boundary value problems, but are
also considered for time-dependent problems. Schwarz
methods are among the simplest and most popular types of
DDM, and map well to MPI-style parallelism, with both
one-level and multilevel variants. One-level methods de-
compose the global problem into multiple subproblems
(subdomains), which are obtained either by discretizing
the same PDE over a physical subdomain or by projection
onto a discrete basis, using subproblem solutions to form a
preconditioner for the global problem. Classical Schwarz
methods generally consider Dirichlet or Neumann bound-
ary conditions between the subdomains, while Optimized
Schwarz methods (OSM) (Gander et al., 2000) consider
a combination of Dirichlet and Neumann boundary condi-
tions, known as Robin-type boundary conditions, to improve
the convergence of the method. Restricted additive Schwarz
(RAS) methods (Cai & Sarkis, 1999) are a common form
of Schwarz methods, and optimized versions of one-level
RAS has been theoretically studied by St-Cyr et al. (2007).
Two-level methods extend one-level approaches by adding
a (global) coarse-grid correction step to the preconditioner,
generally improving performance but at an added cost.

Optimizing PDE solvers has been of significant importance
to the engineering and applied mathematic communities,
and studies have been using various tools such as genetic
programming Schmitt et al. (2021). Nevertheless, in recent
years, there has been a growing focus on using machine
learning (ML) methods to learn optimized parameters for it-
erative PDE solvers, including DDM and algebraic multigrid
(AMG). In Greenfeld et al. (2019) convolutional neural net-
works (CNNs) are used to learn the interpolation operator in
AMG on structured problems, and in a following study (Luz
et al., 2020), graph neural networks (GNNs) are used to
extend the results to arbitrary unstructured grids. In a dif-
ferent fashion, reinforcement learning methods along with
GNNs are used to learn coarse-gird selection in reduction-
based AMG in Taghibakhshi et al. (2021). As mentioned
in Heinlein et al. (2021), when combining ML methods
with DDM, approaches can be categorized into two main
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families, namely using ML within a classical DDM frame-
work to obtain improved convergence and using deep neural
networks as the main solver or discretization module for
DDMs. In a recent study (Taghibakhshi et al., 2022), GNNs
are used to learn interface conditions in optimized Schwarz
DDMs that can be applied to many subdomain problems,
but their study is limited to one-level solvers. Two-level
domain decomposition methods often converge significantly
faster than one-level methods since they include coarse-grid
correction, but obtaining optimized multilevel DDMs for
general unstructured problems with arbitrary subdomains
remains an open challenge.

Graph neural networks (GNNs) extend learning based meth-
ods and convolution operators to unstructured data. Similar
to structured problems, such as computer vision tasks, many
graph-based problems require information sharing beyond
just a limited local neighborhood in a given graph. How-
ever, unlike in CNNs, where often deep CNNs are used with
residual skip connections to achieve long range information
passing, GNNs dramatically suffer depth limitations. Stack-
ing too many GNN layers results in oversmoothing, which
is due to close relation of graph convolution operators to
Laplacian smoothing (Li et al., 2018; Oono & Suzuki, 2019).
Oversmoothing essentially results in indistinguishable node
representations after too many GNN layers, due to informa-
tion aggregation in a large local neighborhood. Inspired by
the Unet architecture in CNNs (Ronneberger et al., 2015),
graph U-nets (Gao & Ji, 2019) were introduced as a rem-
edy for longe-range information sharing in graphs without
using too many GNN layers. Similar to their CNN counter-
parts, graph-Unet architectures apply down-sampling layers
(pooling) to aggregate node information to a coarser repre-
sentation of the problem with fewer nodes. This is followed
by up-sampling layers (unpooling, with the same number
of layers as pooling) to reconstruct finer representations of
the problem and allow information to flow back to the finer
levels from the coarser ones.

As mentioned in Ke et al. (2017), U-net and graph-Unet
architectures suffer from a handful of problems and non-
optimalities. In these architectures, scale and abstraction are
combined, meaning earlier, finer layers cannot access the in-
formation of the coarse layers. In other words, initial layers
learn deep features only based on a local neighborhood with-
out considering the larger picture of the problem. Moreover,
finer levels do not benefit from information updates until
the information flow reaches the coarsest level and flows
back to the finer levels. That is, the information flow has
to complete a full (graph) U-net cycle to update the finest
level information, which could potentially require multiple
conventional layers, leading to oversmoothing in the case of
graph U-nets. More recently, there has been similar hierar-
chical GNN architectures utilized for solving PDEs, such
as those proposed by Fortunato et al. (2022) and Li et al.

(2020). In each case, the architecture is similar to a U-net, in
terms in terms of information flow (from the finest to coars-
est graph and back), and there is no cross-scale information
sharing, making them prone to the aforementioned U-net
type problems.

To fully unlock the ability of GNNs to learn optimal DDM
operators, and to mitigate the shortcomings of graph U-
nets mentioned above, we introduce here a novel GNN
architecture, multigrid graph neural networks (MG-GNN).
MG-GNN information flow is parallel at all scales, mean-
ing every MG-GNN layer processes information from both
coarse and fine scale graphs. We employ this MG-GNN
architecture to advance DDM-based solvers by developing
a learning-based approach for two-level optimized Schwarz
methods. Specifically, we learn the Robin-type subdomain
boundary conditions needed in OSM as well as the overall
coarse-to-fine interpolation operator. We also develop a
novel loss function essential for achieving superior perfor-
mance compared to previous two-level optimized RAS. The
summary of contributions of this paper is as follows:

• Introduce a multigrid graph neural network (MG-
GNN) architecture that outperforms existing hierar-
chical GNN architectures in learning DDMs and scales
linearly with problem size;

• Improve the loss function with theoretical guarantees
essential for training two-level Schwarz methods;

• We demonstrate a general method that can train only
on small problems and then generalizes to orders of
magnitude larger problems, and

• Outperform classical two-level RAS, both as station-
ary algorithm and as a preconditioner for the flexible
generalized minimum residual (FGMRES) iteration.

2. Background
In this section, we review one and two-level DDMs. Let Ω
be an open set in R2, and consider the Poisson equation:

−∆Φ = f, (1)

where ∆ is the Laplace operator and f(x, y) and Φ(x, y)
are real-valued functions. Alongside (1), we consider inho-
mogeneous Dirichlet conditions on the boundary of Ω, ∂Ω,
and use a piecewise linear finite-element (FE) discretization
on arbitrary triangulations of Ω. In the linear FE discretiza-
tion, every node in the obtained graph corresponds to a
degree of freedom (DoF) in the discretization, and the set of
all nodes is denoted by D. The set D is decomposed into
S non-overlapping subdomains {D0

1, D
0
2, . . . , D

0
S} (where

the superscript in the notation indicates the amount of over-
lap; hence, the superscript zero for the non-overlapping
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decomposition). The union of the subdomains covers the
set of all DoFs, D = ∪D0

i , so that each node in D is con-
tained in exactly one D0

i . Denote the restriction operator
for discrete DoFs onto those in D0

i by R0
i and the corre-

sponding extension from D0
i to D by (R0

i )
T . Following

the FE discretization of problem, we obtain a linear system
to solve, Ax = b, where A is the global stiffness matrix.
For every D0

i , we obtain the subdomain stiffness matrix
as A0

i = R0
iA(R0

i )
T . In the OSM setting, alternative def-

initions to this Galerkin projection for A0
i are possible as

noted below. To obtain the coarse-level representation of
the problem, let P ∈ RS×|D| be the piecewise-constant
interpolation operator that assigns every node in D0

i to the
i-th coarse node. The coarse-level operator is then obtained
as AC = PTAP .

The restricted additive Schwarz method (RAS) (Cai &
Sarkis, 1999) is an important extension to the Schwarz
methodology for the case of overlapping subdomains, where
some nodes in D belong to more than one subdomain. De-
noting the overlap amount by δ ∈ N, we define the sub-
domains Dδ

i for δ > 0 by recursion, as Dδ
i = Dδ−1

i ∪
{j | akj 6= 0 for k ∈ Dδ−1

i }. For the coarse-grid interpo-
lation operator, P , each of the overlapping nodes is now
associated with multiple columns of P , which is typically
chosen as a partition of unity, with rows of P having equal
non-zero weights (that can be interpreted as the probability
of assigning a fine node to a given subdomain). The con-
ventional two-level RAS preconditioner is then defined by
considering the fine-level operator, MRAS, and the coarse-
level correction operator, C2-RAS, given by

MRAS =

S∑
i=1

(R̃δi )
T (Aδi )

−1Rδi , (2)

C2-RAS = P (PTAP )−1PT , (3)

where Aδi = (Rδi )
T
ARδi . The operator Rδi denotes restric-

tion for DoFs in D to those in Dδ
i while R̃δi is a modified

restriction from D to Dδ
i that takes nonzero values only for

DoFs in D0
i . The two-level RAS preconditioner is given

as M2-RAS = C2-RAS + MRAS − C2-RASAMRAS, with the
property that I −M2-RASA = (I −C2-RASA)(I −MRASA).

In the case of optimized Schwarz, the subdomain systems
(fine-level Aδi ) are modified by imposing a Robin bound-
ary condition between subdomains, writing Ãδi = Aδi + Li,
where Li is the term resulting from the Robin-type condi-
tion:

αu+ ~n · ∇u = g(x), (4)

where g denotes inhomogeneous data and ~n is the out-
ward unit normal to the boundary. From the finite-element
perspective, a Robin boundary condition appears in the

weak form as an integral over the exterior edges of the
(sub)domain of the form α

∫
∂

Ωuv. While it is common
to think of this for straight edges of a regular domain, it is
defined in the same way for irregular subdomains, and the
resulting nonzero pattern in Li is simply (periodic) tridiag-
onal, when the vertices are ordered in a cycle around the
boundary of the (sub-)domain. Here, α could be variable
along the edges of each subdomain, leading to a general
symmetric (periodic) tridiagonal structure for Li when the
vertices are ordered in a cycle (and a known pattern when
the vertices are in another order). Thus, for the optimization,
we identify a cycle or path in the graph corresponding to
Ai with the property that every node in the cycle (or path)
is on the boundary of Dδ

i , but not the boundary of D, the
discretized domain. This defines the (permuted) tridiagonal
structure for Li, and we restrict the nonzero entries in Li to
its diagonal and off-diagonal entries associated with edges
on the cycle or path.

The fine-level operator for optimized Schwarz is then given
by

MORAS =

S∑
i=1

(
R̃δi

)T (
Ãδi

)−1
Rδi , (5)

where the choice of weight, α, in the subdomain Robin
boundary condition is a parameter for optimization. Simi-
larly, the method can be improved by optimizing the choice
of coarse-level interpolation operator, P , but this has not
been fully explored in the OSM literature. Similarly to
with RAS, we define the two-level ORAS preconditioner as
M2-ORAS = C2-RAS +MORAS − C2-RASAMORAS.

The work of Taghibakhshi et al. (2022) suggests a method
to learn Li for one-level ORAS. Here, we learn both Li
and P for two-level methods since, as later shown in Fig-
ure 7, the two-level methods are significantly more robust.
Furthermore, as we show in Section 5.2, while learning
both ingredients improves the performance, learning the
interpolation operator, P , is significantly more important
than learning Li’s in order to obtain a two-level solver that
outperforms classical two-level RAS.

3. Multigrid graph neural network
The multigrid neural architecture (Ke et al., 2017) is an ar-
chitecture for CNNs that extracts higher level information in
an image more efficiently by cross-scale information shar-
ing, in contrast to other CNN architectures, such as U-nets,
where abstraction is combined with scale. That is, in one
multigrid layer, the information is passed between different
scales of the problem, removing the necessity of using deep
CNNs or having multilevel U-net architectures. Inspired
by Ke et al. (2017), we develop a multigrid architecture for
GNNs, enabling cross-scale message (information) passing
without making the GNN deeper; we call our architecture
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Multigrid GNN, or MG-GNN. Figure 1 shows one layer of
the MG-GNN with two levels (a fine and a coarse level).

The input data to one layer of an MG-GNN has L different
graphs, from fine to coarse, denoted byG(`) = (X(`), A(`)),
whereA(`) ∈ Rn`×n` andX(`) ∈ Rn`×d are adjacency and
node feature matrices, respectively, and n` and d are the
number of nodes and node feature dimension in `-th graph
for ` ∈ {0, 1, . . . , L − 1}, with ` = 0 denoting the finest
level. If the input graph does not have multiple levels, we
obtain the coarser levels recursively by considering a node
assignment matrix (clustering operator) R(`) ∈ Rn`+1×n` ,
for ` ∈ {0, 1, . . . , L− 2}:

X(`+1) = R(`)X(`), (6)

A(`+1) = R(`)A(`)(R(`))T . (7)

We note that, in general, the assignment matrix R` could
be any pooling/clustering operator, such as k-means clus-
tering, learnable pooling, etc. We denote R(`→k) to be the
assignment matrix of graph level ` to level k (with ` < k),

which is constructed through R(`→k) =
k−1∏
j=`

R(j) (down-

sampling). To complement this terminology, we also define
R(k→`) = (R(`→k))T for ` > k (up-sampling), and for
the case of ` = k, the assignment matrix is simply the
identity matrix of dimension n`. The mathematical for-
malism of the m-th layer of the MG-GNN with L levels
is as follows: given all graphs feature matrices, X(`)

m , for
` ∈ {0, 1, . . . , L− 1}:

Ẋ`→k = F `→k(X(`)
m , X(k)

m , R(`→k)) (8)

X̃(`)
m = [Ẋ0→`‖Ẋ1→`‖ . . . ‖Ẋk−1→`] (9)

X
(`)
m+1 = GNN(`)(X̃(`)

m , A(`)) (10)

where ‖ denotes concatenation, and GNN(`) and F `→`

could be any homogeneous and heterogeneous GNNs, re-
spectively. For the case of ` 6= k, we consider F `→k to be
a heterogeneous message passing scheme between levels `
and k, which is defined as follows. Consider any node v in
G(`) and denote the row inX(`)

m corresponding to the feature
vector of node v by xv. Then, F `→k(X

(`)
m , X

(k)
m , R(`→k))

is given by

mv = g`→k
(

�
ω∈N (v)

f `→k(xv, xω, evω), xv

)
(11)

where evω is the feature vector of the edge (if any) connect-
ing v and ω, � is any permutation invariant operator such as
sum, max, min, etc., and f `→k and g`→k are learnable multi-
layer perceptrons (MLPs). See Figure 2 for visualization of
up-sampling and down-sampling in MG-GNN. In this study,

𝐶!"

𝐶#"

𝐶!

𝐶#

Figure 1. One layer of MG-GNN. ci and c′i denote the feature
dimensions of different levels before and after passing through an
MG-GNN layer, respectively.

≡≡

≡

Figure 2. Upsampling and downsampling in MG-GNN.

we consider a two-level MG-GNN (see Figure 1) and, for
the clustering, we consider a k-means-based clustering al-
gorithm (best known as Lloyd’s algorithm) which has O(n)
time complexity and guarantees that every node will be
assigned to a subdomain (Bell, 2008; Lloyd, 1982)) in a con-
nected graph. As mentioned earlier, the MG-GNN architec-
ture could alternatively use any pooling/clustering method
such as DiffPool (Ying et al., 2018), top-K pooling (Gao
& Ji, 2019), ASAP (Ranjan et al., 2020), SAGPool (Lee
et al., 2019), to name but a few. In other words, MG-GNN
architecture does not have any restrictions in terms of the
choice of the pooling/clustering algorithm. However, for
the case of this paper, since RAS (and therefore, ORAS)
necessitates every node in the fine grid be assigned to a
subdomain, we do not consider the aforementioned pooling
(clustering) methods. We note that other k-means-based
clustering algorithms (e.g. Graclus clustering) could alter-
natively be used instead of Lloyd’s algorithm; however, we
only consider Lloyd’s algorithm in this study.

4. Optimization problem and loss function
In this section, we denote the `2 norm of a matrix or vector
by ‖ · ‖ and the spectral radius of matrix T by ρ(T ). Our
objective is to minimize the asymptotic convergence factor
of the two-level ORAS method, defined as minimizing ρ(T ),
where T = I−M2-ORASA = (I−C2-ORASA)(I−MORASA)
is the error propagation operator of the method. Since T
is not necessarily symmetric, ρ(T ) is formally defined as
the extremal eigenvalue of TTT . As discussed in Wang



MG-GNN: Multigrid Graph Neural Networks for Learning Multilevel Domain Decomposition Methods

et al. (2019), numerical unsuitability of backpropagation
of an eigendecomposition makes it infeasible to directly
minimize ρ(T ). To this end, Luz et al. (2020) relax the
spectral radius to the Frobenius norm (which is an upper
bound for it), and minimize that instead. However, for
the case of optimizing one-level DDM methods, the work
in Taghibakhshi et al. (2022) highlights that the Frobenius
norm is not a “tight” upper bound for ρ(T ), and considers
minimizing a relaxation of ρ(T ) inspired by Gelfand’s for-
mula, ∀K∈N ρ(T ) ≤ ‖TK‖ 1

K = supx:‖x‖=1(‖TKx‖) 1
K .

We present a modified version of the loss function intro-
duced by Taghibakhshi et al. (2022) and, in Section 5.3, we
show the necessity of this modification for improving the
two-level RAS results.

Consider the discretized problem with DoF set D of size
n, decomposed into S subdomains, Dδ

1, D
δ
2, . . . , D

δ
S with

overlap δ. The GNN takes D, its decomposition, and a
sparsity pattern for the interface values and that of the inter-
polation operator as inputs and its outputs are the learned
interface values and interpolation operator (see Appendix B
for more discussion on inputs and outputs of the network):

P (θ), L
(θ)
1 , L

(θ)
2 , . . . , L

(θ)
S ← ψ(θ)(D). (12)

where ψθ denotes the GNN, and θ represents the learnable
parameters in the GNN.

We obtain the modified two-level ORAS (Optimized
Restricted Additive Schwarz) operator by using the
learned coarse grid correction operator, Cθ2-ORAS =

P (θ)
(
(P (θ))TAP (θ)

)−1 (
P (θ)

)T
, and the fine grid oper-

ator, M (θ)
ORAS from (12). The associated 2-level error propa-

gation operator is then given by T (θ) = (I−C(θ)
2-ORASA)(I−

M
(θ)
ORASA).

In order to obtain an approximate measure of ρ(T (θ)) while
avoiding eigendecomposition of the error propagation ma-
trix, similar to Taghibakhshi et al. (2022), we use stochas-
tic sampling of

∥∥∥(T (θ)
)K∥∥∥, generated by the sample set

X ∈ Rn×m for some m ∈ N, given as

X = [x1, x2, . . . , xm],∀j xj ∼ Rn uniformly, ‖xj‖ = 1,
(13)

where each xj is sampled uniformly randomly on a unit
sphere in Rn using the method introduced in Box (1958).
We then define

Y
(θ)
K ={∥∥∥∥(T (θ)

)K
x1

∥∥∥∥ ,∥∥∥∥(T (θ)
)K

x2

∥∥∥∥ , . . . ,∥∥∥∥(T (θ)
)K

xm

∥∥∥∥} .
(14)

Note that
∥∥∥(T (θ)

)K
xj

∥∥∥ is a lower bound for
∥∥∥(T (θ)

)K∥∥∥.

Taghibakhshi et al. (2022) use L(θ) = max(Y
(θ)
K ) as a

practical loss function. However, for large values of K, this
loss function suffers from vanishing gradients. Moreover,
as we show in Section 5.3, employing this loss function
results in inferior performance of the learned method in
comparison to two-level RAS. To overcome these issues,
we define Z(θ)

k = max((Y
(θ)
k )

1
k ) for 1 ≤ k ≤ K to arrive

at a new loss function,

L(θ) = 〈softmax(Z(θ)), Z(θ)〉+ γtr
(

(P (θ))TAP (θ)
)
,

(15)
where Z(θ) =

(
Z

(θ)
1 , Z

(θ)
2 , . . . , Z

(θ)
K

)
, 0 < γ is an ad-

justable constant, and tr(M) is the trace of matrix M .
Adding the term tr((P (θ))TAP (θ)) is inspired by energy
minimization principles, to obtain optimal interpolation op-
erators in theoretical analysis of multilevel solvers (Xu,
1992; Wan et al., 1999). In Section 5.3, we show the signifi-
cance of this term in the overall performance of our model.
Nevertheless, for the first part of the new loss function (15),
we prove that it converges to the spectral radius of the error
propagation matrix in a suitable limit. First, we include two
lemmas:

Lemma 1. For x, y ∈ R, with 0 ≤ y ≤ x and any K ∈ N,
x

1
K − y 1

K ≤ (x− y)
1
K

Proof. See Lemma 3 from Taghibakhshi et al. (2022).

Lemma 2. For any nonzero square matrix T ∈ Rn×n,
k ∈ N, ε, ξ > 0, and 0 < δ < 1, there exists M ∈ N
such that for any m ≥ M , if we choose x1, x2, . . . , xm
uniformly random from {x ∈ Rn | ‖x‖ = 1}, and Z =

max{‖T kx1‖
1
k , ‖T kx2‖

1
k , . . . , ‖T kxm‖

1
k } then, with a

probability of at least (1− δ), the following hold:

0 ≤ ‖T k‖ 1
k − Z ≤ ε, (16)

ρ(T )− ξ ≤ Z. (17)

Proof. The left side of the first inequality is achieved by
considering the definition of matrix norm, i.e. for any 1 ≤
i ≤ m, ‖T kxi‖ ≤ sup

‖x‖=1

‖T kx‖ = ‖T k‖, then taking

the kth root of both sides. For the right side of the first
inequality, consider the point x∗ ∈ {x ∈ Rn | ||x|| = 1}
such that ‖T kx∗‖ = sup

‖x‖=1

‖T kx‖ (such a point exists since

Rn is finite dimensional). Let S be the total volume of the
surface of an n dimensional unit sphere around the origin,
and denote by S̃ the volume on this surface within distance
ε̃ of the point x∗ in the `2 measure, for ε̃ = ε

‖Tk‖
1
k

. Let

m ≥M1 >
log(δ)

log
(
1− S̃S

) , then, since 0 < δ < 1, we have:

P (‖x∗ − xi‖ > ε̃, ∀i) =

(
1− S̃

S

)m
≤ δ (18)
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Therefore, with probability of at least (1−δ), there is one xi
within the ε̃ neighborhood of x∗ on the unit sphere. Without
loss of generality, let x1 be that point. Using Lemma 1 and
the reverse triangle inequality, we have

∥∥T kx∗∥∥ 1
k −

∥∥T kx1∥∥ 1
k ≤

(∥∥T kx∗∥∥− ∥∥T kx1∥∥) 1
k

≤
∥∥T k∥∥ 1

k ‖x∗ − x1‖
1
k ≤ ‖T k‖ 1

k ε̃ = ε (19)

which finishes the proof for the right side of the first inequal-
ity.

For the second inequality, since ρ(T ) ≤ ‖T k‖ 1
k , choose

M2 such that, with probability 1 − δ, (16) holds for ε =
‖T k‖ 1

k − ρ(T ) + ξ > 0. Rearranging (16) then yields (17)
for any m ≥M = max{M1,M2}.

We next state the main result on optimality.

Theorem 3. For any nonzero matrix T , ε > 0, and
δ < 1, there exist M,K ∈ N such that for any
m > M , if one chooses m points, xj , uniformly
at random from {x ∈ Rn | ‖x‖ = 1} and defines
Zk = max{‖T kx1‖

1
k , ‖T kx2‖

1
k , . . . , ‖T kxm‖

1
k }, then

Z = (Z1, Z2, . . . , ZK) satisfies:

P (|〈softmax(Z), Z〉 − ρ(T )| ≤ ε) > 1− δ. (20)

Proof. Since ρ(T ) ≤ ‖T k‖ 1
k for any k and

limk→∞ ‖T k‖
1
k = ρ(T ), for any 0 < α, there exists

K∗ ∈ N such that for any k > K∗, 0 ≤ ‖T k‖ 1
k−ρ(T ) < α.

Take 0 < α < min{ ε2 , log( e
−ε(ε+ρ(T ))
ε
2+ρ(T ) )}, let u =

max{ max
1≤k≤K∗

{‖T k‖ 1
k }+α, ρ(T )+2α}, δ̃ = 1−(1−δ) 1

K ,

and take K > max{ K∗(ueu−(ρ(T )+α)eρ(T )+α)
eρ(T )−ε(ε+ρ(T )−(ρ(T )+α)eα+ε)

,K∗}.
Note that, by the choice of α, we have ρ(T )+α < ρ(T )+ ε

2

and eα+ε < ρ(T )+ε
ρ(T )+ ε

2
, which (along with the choice of u)

guarantees a positive K. By Lemma 2, for any 1 ≤ i ≤ K∗
and K∗ < j ≤ K, there exists ni, nj ∈ N such that:

P (ρ(T )− ε ≤ Zi ≤ u) > 1− δ̃ for m > ni,
(21)

P (ρ(T )− ε ≤ Zj ≤ ρ(T ) + α) > 1− δ̃ for m > nj .
(22)

For any 1 ≤ k ≤ K, take nk independent points on unit
sphere so that the above inequalities are satisfied for all

k. Note that this can be achieved by taking M =
K∑
k=1

nk.

Since the points for satisfying equations (21) and (22) are
chosen independently, for any m > M , with probability of

at least
K∏
k=1

(1− δ̃) = 1− δ, we have ρ(T )− ε ≤ Zk for all

1 ≤ k ≤ K. Consequently:

− ε =

(ρ(T )− ε)
K∑
i=1

eZi

K∑
i=1

eZi
− ρ(T ) ≤

K∑
i=1

Zie
Zi

K∑
i=1

eZi
− ρ(T )

(23)

= 〈softmax(Z), Z〉 − ρ(T ) (24)

≤ uK∗eu + (K −K∗)(ρ(T ) + α)eρ(T )+α

Keρ(T )−ε − ρ(T )

(25)

=
K∗(ueu − (ρ(T ) + α)eρ(T )+α)

Keρ(T )−ε

+ (ρ(T ) + α)eα+ε − ρ(T ) ≤ ε, (26)

where the last inequality is obtained by the choice ofK.

In addition to these properties of the loss function, we now
show that obtaining the learned parameters using our MG-
GNN architecture scales linearly with the problem size.

Theorem 4. The time complexity to obtain the optimized
interface values and interpolation operator using our MG-
GNN is O(n), where n is the number of nodes in the grid
(which is also the dimension of the original linear system).

Proof. Every in/cross-level graph convolution of the MG-
GNN has linear complexity. This must be the case when the
graph convolution is a message passing scheme due to the
sparsity in finite-element triangulations. For the case that
the graph convolution is a TAGConv layer, we have y =∑L
`=1G`x` + b1n, where x` ∈ Rn are the node features,

L is the node feature dimension, b is a learnable bias, and
G` ∈ Rn×n is the graph filter. In TAGConv layers, the
graph filter is given as G` =

∑J
j=0 g`,jM

j , where M is
the adjacency matrix, J is a constant, and g`,j are the filter
polynomial coefficients. In other words, the graph filter it
is a polynomial in the adjacency matrix M of the graph.
Moreover, the matrix M is sparse, hence obtaining M j has
O(n) computation cost, resulting in full TAGConv O(n)
time complexity. Moreover, for both the interface value
head and the interpolation head of the network, the cost of
calculating edge feature and the feature networks are O(n),
resulting in overall O(n) cost of MG-GNN.

Remark: We not that the above theorem only addresses
the forward pass of the MG-GNN, and for the backward
pass, due to lack of support for sparse matrix operations
in PyTorch, the complexity is not linear anymore. This is
software limitation and not an algorithmic one, and more-
over, we emphasize that this limitation is no longer binding
once the MG-GNN is trained, as one no longer needs back-
propagation after the training stage, and are able to test on
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arbitrarily large grids with O(n) scalability as mentioned in
Theorem 4.

5. Experiments
5.1. Training

We train each model on 1000 grids of sizes ranging from
800–1000 nodes, each obtained from the piecewise linear
finite-element discretization of the diffusion equation, given
as Equation 1 in Section 2 (more PDE problems and results
are discussed in Appendix D). The grids are generated ran-
domly as a convex polygon and using PyGMSH (Schlömer,
2021) for meshing its interior. The subdomains are gener-
ated using Lloyd clustering on the graph (Bell, 2008), the
subdomain overlap is set to one, and the weights of the edges
along the boundary determine the interface value operators,
L
(θ)
i . As shown in the interpolation head of the network in

Appendix B Figure 11, the weight of the edges connecting
the coarse and fine grids determine the interpolation opera-
tor. In our case, the edges between the coarse and fine grids
connect every fine node to the coarse node corresponding to
its own subdomain and its neighboring subdomains. Alter-
natively, every fine node could connect only to the coarse
node corresponding to its subdomain but, as we discuss in
Section 5.3, this significantly impacts the performance of
the model. Moreover, each row of the interpolation operator,
P (θ), is scaled to have sum of one, as would be the case for
classical interpolation operators. Note that this normaliza-
tion is done within the forward pass in the network before
obtaining the interpolation operator. Figure 3 shows several
example training grids.

The model is trained for 20 epochs with batch size of 10
using the ADAM optimizer (Kingma & Ba, 2014) with a
fixed learning rate of 5× 10−4. For the full discussion on
model architecture, see Appendix B and Figure 11. For the
loss function parameters introduced in Section 4, we use
K = 10 iterations and m = 100 samples. We developed
our code1 using PyAMG (Bell et al., 2022), NetworkX (Hag-
berg et al., 2008), and PyTorch Geometric (Fey & Lenssen,
2019). All training is executed on an i9 Macbook Pro CPU
with 8 cores. In the training procedure, we aim to mini-
mize the convergence of the stationary algorithm and, as
described in Section 4, we develop a loss function to achieve
this goal by numerically minimizing the spectral radius of
the error propagation matrix. In practice, optimized RAS
methods are often used as preconditioners for Krylov meth-
ods such as FGMRES; as shown in Appendix A, the trained
models using this procedure also outperform other baselines
when used as preconditioners for FGMRES. Directly train-

1All code and data for this paper is at https://github.
com/JRD971000/Code-Multilevel-MLORAS/ (MIT li-
censed).

Figure 3. Training grid examples with about 1k nodes.

Figure 4. Test grid example with about 7.4k nodes.

ing to minimize FGMRES iterations would require using
FGMRES in the training loop and backpropagation through
sparse-sparse matrix multiplication (Nytko et al., 2022),
which is left for future studies.

We evaluate the model on test grids that are generated in
the same fashion as the training grids, but are larger in size,
ranging from 800 to 60k DoFs. An example of a test grid is
shown in Figure 4. Note that the trained model is applied to
test grids with increasing number of subdomains compared
to the training set and with arbitrary subdomain shapes.

5.2. Interface values and interpolation operator

As mentioned in the Section 4, to optimize two-level RAS,
one could optimize the parameters in the interface condi-
tions (2) and/or the interpolation operator (3). For one-level
RAS, on the other hand, there is no interpolation operator
(since there is no coarse grid), leaving only the interface
values to optimize, as was explored in Taghibakhshi et al.
(2022) and St-Cyr et al. (2007). To compare the importance
of these two ingredients in the two-level RAS optimization,
we compare three different models. Each of these models
is trained as described in Section 5.1; however, one of the
models (labeled “interface”) is trained by only learning the
interface values (ignoring the interpolation head of the net-
work), and using classical RAS interpolation to construct
T (θ). Another model, which we label “interpolation”, only
learns the interpolation operator weights, and uses zeros for
interface matrices L(θ)

i to construct T (θ). The other model
uses both training heads (see Figure 11), learning the inter-
face values and the interpolation operator. We compare the
performance of these models with classical RAS in Figure 5
as a stationary algorithm, and in Figure 9 as a preconditioner

https://github.com/JRD971000/Code-Multilevel-MLORAS/
https://github.com/JRD971000/Code-Multilevel-MLORAS/
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Figure 5. Effect of learning interface values, interpolation operator,
or both on stationary iterations.

for a Krylov method, FGMRES.

The results show that learning the interpolation operator is
more important in optimizing the 2-level RAS. Intuitively,
the coarse-grid correction process in (3) plays an important
role in scaling performance to large problems, due to its
global coupling of the discrete DOFs. The interpolation
operator is critical in achieving effective coarse-grid cor-
rection. On the other hand, the interface values are local
modifications to the subdomains (see (2)), that cannot (by
themselves) make up for a poor coarse-grid correction pro-
cess. Learning both operators clearly results in the best
performance in Figures 5 and 9, where the interpolation
operator can be adapted to best complement the effects of
the learned interface values.

5.3. Loss function and sparsity variants

We first compare five variants of our method with the RAS
baseline, as shown in Figures 6 and 9. The main model
is trained as described in Section 5.1 with the loss func-
tion from Section 4. All but one of the variants only dif-
fer in their loss function, and share the rest of the details.
The variant labeled “Max loss” is trained with the loss
function from Taghibakhshi et al. (2022). The variant la-
beled “Max+Trace loss” is trained with the loss function
from Taghibakhshi et al. (2022) plus the γtr(PTAP ) term.
Similarly, the variant labeled “Softmax loss” is trained by re-
moving the γtr(PTAP ) part from the loss function in (15).
For the last variant, we restrict the sparsity of the interpola-
tion operator to that obtained by only connecting every fine
node to its corresponding coarse node, labelled “DDM stan-
dard sparsity”, and trained using the loss function from (15).
As shown in Figure 6, the learned operator using this variant
achieves worse performance than the baseline RAS. This
is partly because, for this variant, the constraint on unit row
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Figure 6. Effect of every ingredient in the model on average station-
ary iterations. All three variants outperforming the RAS baseline
are utilizing modifications introduced in this paper (see (15)) com-
pared to the “Max loss” from Taghibakhshi et al. (2022).

sums of the interpolation operator effectively removes most
of the learned values, since many rows of interpolation have
only one nonzero entry in this sparsity pattern.

To show the effectiveness of the coarse-grid correction and
the learned operator, we also compare two-level RAS and
our two-level learned RAS (MLORAS 2-level) with one-
level RAS and one-level optimized RAS from Taghibakhshi
et al. (2022) in Figures 7 and 10.

5.4. Comparison to Graph U-net and number of layers

In this section, the performance of Graph U-net and MG-
GNN with different numbers of layers is studied. Figures 8
and 10 show the performance of each of the models as
stationary iterations and preconditioners for FGMRES, re-
spectively. For a fair comparison, the MG-GNN and graph
U-nets that share the same number of layers also have the
same number of trainable parameters. As shown here, the
best performance is achieved with 4 layers of MG-GNN, and
MG-GNN strictly outperforms the graph U-net architecture
with the same number of layers.

6. Conclusion
In this study, we proposed a novel graph neural network
architecture, which we call multigrid graph neural network
(MG-GNN), to learn two-level optimized restricted additive
Schwarz (optimized RAS or ORAS) preconditioners. This
new MG-GNN ensures cross-scale information sharing at
every layer, eliminating the need to use multiple graph con-
volutions for long range information passing, which was a



MG-GNN: Multigrid Graph Neural Networks for Learning Multilevel Domain Decomposition Methods

103 104

Grid size

102

103

S
ta

ti
on

a
ry

it
er

at
io

n
s

RAS 1-level

MLORAS 1-level

RAS 2-level

MLORAS 2-level (ours)

Figure 7. Comparison of stationary iterations of 2-level methods
with 1-level methods from Taghibakhshi et al. (2022).

2 4 6 8

Number of layers

45

50

55

A
v
g

st
at

io
n

ar
y

it
er

at
io

n
s

Graph U-net MG-GNN (ours)

Figure 8. Average stationary iterations of graph U-net and MG-
GNN with different number of layers on the test set.

shortcoming of prior graph network architectures. More-
over, MG-GNN scales linearly with problem size, enabling
its use for large graph problems. We also introduce a novel
unsupervised loss function, which is essential to obtain im-
proved results compared to classical two-level RAS. We
train our method using relatively small graphs, but we test
it on graphs which are orders of magnitude larger than the
training set, and we show our method consistently outper-
forms the classical approach, both as a stationary algorithm
and as an FGMRES preconditioner. Our method can be ex-
tended to 3-level ORAS and above; nevertheless, due to lack
of backpropagation through sparse matrix multiplication in
available software, this is left for future studies. Addition-
ally, the benefits of the MG-GNN structure was only studied
for learning ORAS and studying that in other graph prob-
lems is left for future research. Moreover, a long-term goal
of future research in this direction would be developing an
ORAS for higher-order discretizations for which algebraic
multigrid (AMG) methods are ineffective.
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A. FGMRES plots
In Section 5, in Figures 5 to Figure 8, the performance of the methods was evaluated by considering the convergence
of stationary iterations. Here, we present another possible evaluation criterion, assessing the number of iterations to
convergence for the preconditioned systems using FGMRES, a standard Krylov method. The following figures are analogous
to those provided in the main paper, and demonstrate that our method also achieves superior results compared to other
methods, and that the MG-GNN architecture outperforms graph U-nets.
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Figure 9. Left: Effect of learning interface values, interpolation operator, or both on FGMRES iterations. All three variants outperforming
the RAS baseline are utilizing modifications introduced in this paper (15) compared to the “Max loss” from Taghibakhshi et al. (2022).
Right: Effect of every ingredient in the model on average FGMRES iterations.

103 104

Grid size

50

100

150

F
G

M
R

E
S

it
er

at
io

n
s

RAS 1-level

MLORAS 1-level

RAS 2-level

MLORAS 2-level (ours)

2 4 6 8

Number of layers

35.5

36.0

36.5

37.0

37.5

38.0

A
v
g

F
G

M
R

E
S

it
er

at
io

n
s

Graph U-net MG-GNN (ours)

Figure 10. Left: Comparison of FGMRES iterations of 2-level methods with 1-level methods from Taghibakhshi et al. (2022). Right:
Average FGMRES iterations of graph U-net and MG-GNN with different number of layers on the test set.
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B. Model architecture
Inputs and outputs: The model takes any unstructured grid as its input, which consists of the node features, edge features,
and adjacency matrix of both the fine and coarse grids. Every node on the fine level has a binary feature, indicating whether
it lies on the boundary of a subdomain. Fine level edge features are obtained from the discretization of the underlying PDE,
A, and the adjacency matrix of the fine level is simply the sparsity of A. Similar attributes for the coarse level are obtained
as described in Section 3, Equations (6) and (7), and Lloyd aggregation has been used for obtaining subdomains throughout.
The outputs of the model are the learned interface values and the interpolation operator.

We use node and edge preprocessing (3 fully connected layers of dimension 128, followed by ReLU activations, in the
node and feature space, respectively) followed by 4 layers of MG-GNN. For GNN(`) in (10) and F `→` in (8), we use a
TAGConv layer (Du et al., 2017) and, for F `→k with ` 6= k, we use a heterogeneous message passing GNN as shown in
Equation (11). Specifically, we choose summation as the permutation invariant operator in (11) and, for the MLPs, we use
two fully connected layers of size 128 with ReLU nonlinearity for f `→k and g`→k(x, y) = x.

Following the MG-GNN layers, the network will split in two heads, each having a stack layer (which essentially concatenates
the features of nodes on each side of every edge) and an edge feature post-processing (see Figure 12 for details). The edge
weights between the coarse and fine level are the learned interpolation operator weights, and the edge values along the
subdomains in the fine level are the learned interface values. The upper head of the network has a masking block at the end,
which masks the edge values that are not along the boundary, hence only outputting the learned interface values. The overall
GNN architecture for learning the interpolation operator and the interface values is shown in Figure 11.

Note: AS stated in the paper, the inter-level transfers and operators (R(`)) are obtained by the pre-trained Lloyd clustering;
in other words, every coarse node is connected to all of its underlying subdomain nodes. Moreover, note that in the two level
method, the aggregation in DDM is the same as MG-GNN, and in the general MG-GNN architecture (more than 2-level),
still the first level aggregation is the same as DDM, and higher levels are obtained by Lloyd again.
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Figure 11. GNN architecture used in this study.
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Figure 12. Edge feature post-processing block.

C. Runtime
We find that the (offline) training phase (20 epochs of training on a set of 1000 grids) takes about 7.86 hours. During the
(online) testing phase, obtaining the preconditioners (setup of all parts of the preconditioner once the system matrix is given)
takes 11.44 seconds for classical RAS and 13.07 seconds for our MLORAS (averaged over 11 tests). However, we find that
our method makes up for this extra online time in significantly reduced solve times across a range of grid sizes, both as a
stationary iteration and as a preconditioner for FGMRES. We note that the additional online setup time (and even, to some
extent, the offline time) can also be amortized when solving problems involving time-stepping or optimal control, where the
same linear system needs to be solved with many right-hand sides. The table below shows the stationary solve times on
some of the test grids (in seconds):

Test grid size 972 2235 4972 11161 25677 58186
2-level RAS 0.074 0.256 0.839 2.817 10.718 40.089
2-level MLORAS (ours) 0.039 0.116 0.47 1.597 6.986 28.75

D. More problems
We have run tests with more PDEs, including discontinuous and anisotropic diffusion coefficients, as described below,
and propose to include these results in the revised manuscript (and supplementary materials, as space permits). We note
that in terms of iterations to convergence, we see our approach clearly win over RAS for both stationary iterations and
preconditioned FGMRES.

For each of the following problems, we generate training and testing sets with the same parameters for meshes as in the
existing results in the main paper, with training grids of size 800-1000 nodes, and testing grids of size 1000-60000 nodes.
We average iterations-to-convergence over 11 problems in the testing sets. Our proposed additional problems are:

1- Jump-discontinuous diffusion:

−∇ · κ(x, y)∇u = f in Ω, κ(x, y) =

{
100 0 < x < 0.5

1 0.5 ≤ x < 1.

2- Rotated anisotropic diffusion:
−∇ · (T∇u) = f

where T =

[
cos2(θ) + ξ sin2(θ) cos(θ) sin(θ)(1− ξ)
cos(θ) sin(θ)(1− ξ) sin2(θ) + ξ cos2(θ)

]
. We use parameters 0.1 < ξ < 10 and 0 < θ < π

4 to denote the

strength of anisotropy and rotation direction for the problems, with these values chosen uniformly random.

3- Low-diffusion inclusion:

−∇ · κ(x, y)∇u = f in Ω, κ(x, y) =

{
10−8 1

3 < x, y < 2
3

1 else.
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Considering stationary iterations to convergence, we see improvements of 20-45%, as summarized in the following table:

Model Jump discontinuous
diffusion

Rotated anisotropic
diffusion

Low-diffusion inclu-
sion

2-level RAS 72.81 78.09 77.36
2-level MLORAS (ours) 58.18 54.09 52.36

As is typical, the improvements are somewhat less large for preconditioned FGMRES iterations to convergence, but are still
around 10%:

Model Jump discontinuous
diffusion

Rotated anisotropic
diffusion

Low-diffusion inclu-
sion

2-level RAS 39.72 42.18 40.45
2-level MLORAS (ours) 37.45 36.72 37.72

E. Spectral radius metric
Spectral radius of the error propagation matrix is often a better criterion to use in comparing methods, particularly for
convergence of stationary iterations. However, it is often difficult to measure this directly, particularly for problems larger
than a few thousand nodes. To estimate the spectral radius, we run 200 iterations of the stationary iteration on a problem
with a zero right-hand side and random initial guess, and measure the effective per-cycle reduction in error, averaged over
the final 10 iterations. For suitably small problems, we can compare this against a direct eigenvalue calculation on the
preconditioned system matrix, and find that they agree perfectly. Below, we show the measured spectral radii for several test
problems (Poisson on grids of differing sizes), showing that our method always achieves a reduction in the spectral radius in
comparison to classical RAS:

Test grid size 972 2235 4972 11161 25677 58186
2-level RAS 0.671 0.759 0.809 0.854 0.887 0.903
2-level MLORAS (ours) 0.412 0.574 0.715 0.78 0.844 0.876


