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Abstract. Cross-device user matching is a critical problem in numer-
ous domains, including advertising, recommender systems, and cyber-
security. It involves identifying and linking different devices belonging
to the same person, utilizing sequence logs. Previous data mining tech-
niques have struggled to address the long-range dependencies and higher-
order connections between the logs. Recently, researchers have modeled
this problem as a graph problem and proposed a two-tier graph contex-
tual embedding (TGCE) neural network architecture, which outperforms
previous methods. In this paper, we propose a novel hierarchical graph
neural network architecture (HGNN), which has a more computation-
ally efficient second level design than TGCE. Furthermore, we introduce
a cross-attention (Cross-Att) mechanism in our model, which improves
performance by 5% compared to the state-of-the-art TGCE method.

Keywords: Graph neural network · User matching · Cross-attention.

1 Introduction

Ensuring system security and effective data management are critical challenges
in the modern day [3, 4]. In this regard, data integration plays a vital role in
facilitating data management, as it enables the integration of data from diverse
sources to generate a unified view of the underlying domain. One of the primary
challenges in data integration is the problem of entity resolution, which involves
identifying and linking multiple data records that correspond to the same real-
world entity. The problem of entity resolution arises in a wide range of domains,
including healthcare, finance, social media, and e-commerce. Entity resolution is
a challenging problem due to various factors, including the presence of noisy and
ambiguous data, the lack of unique identifiers for entities, and the complexity of
the relationships between different entities.

Among entity resolution tasks, cross-device user matching is of significant
importance. This task involves determining whether two separate devices be-
long to the same real-world person based on their sequential logs. The device
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sequential logs are time-stamped actions taken by the user over a relatively long
period of time, say a few months. These actions are often in the form of browsing
a Uniform Resource Locator (URL), and almost always, user identifications are
not available due to privacy reasons. Refer to Figure 1 for an illustration of the
cross-device user matching task.

Device 1 Device 2

URL 1 URL 2 URL 160… URL 1 URL 2 URL 958…

For the same 
person?

Fig. 1: Cross device user matching problem: only based the URL visit logs of two
different devices, determine whether or not they belong to the same real-world
person.

It is a common occurrence for users to engage in online activities across
multiple devices. However, businesses and brands often struggle with having
insufficient user identities to work with since users are perceived as different
individuals across different devices due to their unique activities. The ability
to automatically identify the same user across multiple devices is essential for
gaining insights into human behavior patterns, which can aid in applications
such as user profiling, online advertising, improving system security. Therefore,
in recent years, the has been a flourishing amount of studies focusing on cross-
device user matching [9].

In recent years, with the advent of machine learning-based methods for entity
resolution, several studies have focused on learning distributed embeddings for
the devices based on their URL logs [6, 11, 12]. The earlier studies focused on
utilizing unsupervised feature learning techniques [7], developing handcrafted
features for the device logs, or relied on co-occurrence of key attributes of URL
logs in pairwise classification [12].

Methods that utilize deep learning have a greater ability to convey dense con-
nections among the sequential device logs. For instance, researchers have utilized
a 2D convolutional neural network (CNN) framework to encode sequential log
representations to understand the relationship between two devices [16]. How-
ever, this model primarily captures local interactions within user sequence logs,
limiting its ability to learn the entire sequence or a higher-level pattern. Re-
cently, there has been further emphasis on the effectiveness of sequential models
like recurrent neural networks (RNNs) and attention-based techniques in mod-
eling sequence patterns and achieving promising results in numerous sequence
modeling tasks [5, 13,15]. Although these methods work well for sequence mod-
eling, they are not specifically designed for user-matching tasks and may not be
optimal for learning sequential log embeddings.
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Recently, researchers proposed a two-tier graph contextual embedding (TGCE)
network for the cross-device user matching [6] task. While previous methods for
the task often failed at long-range information passing along the sequence logs,
TGCE leverages a two-level structure that can facilitate information passing be-
yond the immediate neighborhood of a device log. This was specifically achieved
by considering a random walk starting from every node in a device log, con-
necting all of the visited nodes to the original node, and performing a round of
message passing using the newly generated shortcut edges.

Although the two-tier structure seems to enable long-range information shar-
ing, we note two major limitations with the existing method. First, in the device
graph, the random walk on the URL nodes may randomly connect two URLs
that have been visited at two far-away time-stamps. Intuitively, two different
URLs browsed by a device with weeks of gap in between share less information
than two URLs visited in a shorter time frame. Second, at the end of the TGCE
architecture, for the pairwise classification task, the generated graph embeddings
for two devices are entry-wise multiplied and sent through a fully connected net-
work to determine if they belong to the same person. However, there could be
significant key features in the learned embeddings that may be shared between
the devices, which can alternatively get lost if the architecture does not compare
them across one another.

To address the above two issues, we propose a new hierarchical graph neural
network (HGNN) inspired by the star graph architecture [10]. In the terminology
of HGNN, we refer to the URL nodes as fine nodes, and in an unraveled sequence
of URL logs, HGNN assigns a coarse node to every K consecutive fine nodes.
The message passing between the coarse and fine nodes enables effective long-
range message passing without the need to excessively add edges, as in the
random walk method. Moreover, for the pairwise classification task, we utilize
a cross-attention mechanism inspired by Li et. al. [8], which enables entry-wise
cross-encoding of the learned embeddings. The main contributions of this paper
are summarized as follows:

– We model a given device log as a hierarchical heterogeneous graph, which is
6x faster than the previous state-of-the-art while keeping a competitive level
of accuracy and performance.

– We employ a cross-attention mechanism for pairwise matching of the graphs
associated with a device log, which improves the accuracy of the overall
method by about 5%.

2 Related work

The cross-device user matching task was first introduced in the CIKM Cup 2016‡,
and the first proposed methods for the task mainly considered hand-crafted fea-
tures. For instance, the runner-up solution [9] produces sub-categories based
on the most significant URLs to generate detailed features. Furthermore, the

‡http://cikm2016.cs.iupui.edu/cikm-cup/
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competition winner solution proposed by Tay et. al. [14] utilizes “term frequency
inverse document frequency” (TD-IDF) features of URLs and other related URL
visit time features. However, their manually designed features did not fully inves-
tigate more intricate semantic details, such as the order of behavior sequences,
which restricted their effectiveness. Aside from the hand-crafted features, the
features that are developed from the structural information of the device URL
visit data are also crucial for accomplishing the task of user matching. To fur-
ther process sequential log information, studies have applied LSTM, 2D-CNN,
and Doc2vec to generate semantic features for a sequence visited by a device
[11,12,16].

Sequence-based machine learning models have also been employed for differ-
ent entity resolution tasks; for instance, recurrent neural networks (RNN) have
been utilized to encode behavior item sequential information [5]. Nevertheless,
long-range dependencies and more advanced sequence features are not well ob-
tained using sequence models [6]. With the advent of graph neural networks
(GNN), researchers have modeled device logs as individual graphs where nodes
and edges represent visited URLs and transitions between URLs. Each node
and/or edge has an initial feature vector obtained from the underlying problem,
and the layers of GNNs are then employed to update these features based on
information passing in the local neighborhood of every node, such as the SR-
GNN paper [17]. Another example is the LESSR [1] method for recommendation
systems where the method is capable of long-range information capturing using
an edge-order preserving architecture. However, these methods are specifically
designed for the recommendation task and do not necessarily achieve desirable
results on the cross-device user matching task.

Recently, researchers have proposed TGCE [6], a two-tier GNN for the cross-
device user matching task. In the first tier, for every device log, each URL is
considered as a node, and directional edges denote transitions between URLs.
In the second tier, shortcut edges are formed by starting a random walk from
every node and connecting all of the visited nodes to it. After a round of mes-
sage passing in the first tier, the second tier is supposed to facilitate long-range
information sharing in the device log. After the second tier, a position-aware
graph attention layer is applied, followed by an attention pooling, which outputs
the learned embedding for the whole graph. For the final pairwise classification,
these learned embeddings for each of the devices are multiplied in an entry-wise
manner and are sent to a fully connected deep neural network to determine
whether they belong to the same user.

3 Hierarchical graph neural network

In this section, we discuss how we employ a two-level heterogeneous graph neural
network for the cross-device user matching problem.
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3.1 Problem definition

The aim of the cross-device user matching problem is to determine whether two
devices belong to the same user, given only the URL visits of each device. Denote
a sequence of visited URLs by a device v by Sv = {s1, s2, ..., sn}, where si denotes
the i’th URL visit by the device (note that si’s are not necessarily different).
We build a hierarchical heterogeneous graph, Gv, based on the sequence Sv as
follows: for a visited URL, si, consider a fine node in Gv and denote it by fi. Note
that if multiple si’s correspond to the same URL, we only consider one node for
it in Gv. Then, we connect nodes corresponding to consecutively visited URLs
by directed edges in the graph; we connect fi and fi+1 by a directional edge (if
fi and fi+1 correspond to the same URL, the edge becomes a self-loop). Up to
this point, we have defined the fine-level graph, and we are ready to construct
the second level, which we call the coarse level.

To construct the second level, we partition the sequence Sv into non-overlapping
subgroups of K URLs, where each subgroup consists of consecutively visited
URLs (the last subgroup may have less than K URLs). For every subgroup j,
we consider a coarse node, cj , and connect it to all of the fine nodes corresponding
to the URLs in subgroup j via undirected edges.

3.2 Fine level

In the fine level of the graph Gv, for every node fi, we order the nodes corre-
sponding to the URLs that have an incoming edge to fi according to their posi-
tion in Sv. We denote this ordered sequence of nodes by Ni = {fj1 , fj2 , ..., fjκ}.
Also, we denote the feature vector of the fine node fi by xi. The l-th round of
message passing in the fine-level graph updates the node features according to
the following update methods:

M
(l)
i = Φ(l)([xj1 , xj2 , ..., xjκ , xi]), (1)

x
(l+1)
i = Ψ (l)(x

(l)
i ,M

(l)
i ), (2)

where Φ(l) is a sequence aggregation function (such as sum, max, GRU, LSTM,
etc.), for which we use GRU [2], and Ψ (l) is a function for updating the feature
vector (e.g., a neural network), for which we use a simple mean.

3.3 Coarse level

In every round of heterogeneous message passing between fine and coarse level
nodes, we update both the fine and coarse node features. Consider the coarse
node cj , and denote its feature by x̃j . Also, denote the fine neighbor nodes of cj
by Ñ (cj). In the l-th layer of heterogeneous message passing, the coarse node
feature update is as follows:

x̃
(l+1)
j = �

i∈Ñ (cj)
(W

(i)
1 xi), (3)
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where W (l)
1 is a learnable matrix and � is an aggregation function (such as

mean, max, sum, etc.), for which we use mean. Denote by N (fi) the set of
coarse nodes connected to the fine node fi. We first learn attention weights for
the heterogeneous edges, and then we update fine nodes accordingly. In the l-th
round of heterogeneous message passing, the fine node features are updated as
follows:

e
(l)
i,j = φ(W

(l)
2 x

(l)
i ,W

(l)
3 x̃

(l)
j ), (4)

α
(l)
i,j =

exp(e(l)i,j)∑
j∈N (fi)

exp(e(l)i,j)
, (5)

x
(l+1)
i = ξ(x

(l)
i ,

∑
j∈N (fi)

α
(l)
i,j x̃

(l)
j ), (6)

where W (l)
2 and W (l)

3 are learnable matrices, and ξ and φ are update functions
(such as a fully connected network). Figure 2 shows the overall architecture of
fine and coarse level message passing.
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Fig. 2: From left to right: heterogeneous (fine and coarse) graph modeling from a
given URL sequence. The hierarchical message passing blocks consist of message
passing on the fine nodes with a GRU aggregation function. Next, the coarse node
features are updated using a mean aggregation function. Finally, the fine node
features are updated using their previous feature vector as well as an aggregated
message from their associated coarse nodes obtained via an attention mechanism
between coarse and fine level nodes.

3.4 Cross attention

After the message passing rounds in the fine level and long-range information
sharing between fine and coarse nodes, we extract the learned fine node em-
beddings and proceed to cross encoding and feature filtering, inspired by the
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GraphER architecture [8]. We consider two different device logs v and w, and
their learned fine node embeddings as a sequence, ignoring the underlying graph
structure. We denote the learned fine node embeddings for device logs v and
w as Xv ∈ Rmv×d and Xw ∈ Rmw×d, where mv and mw are the number of
nodes in the fine level of Gv and Gw, respectively. We learn two matrices for
cross-encoding Xv into Xw and vice-versa. Consider the i-th and j-th rows of
Xv and Xw, respectively, and denote them by xv,i and xw,j . The entries α̂i,j of
the matrix Av,w for cross-encoding Xv into Xw are obtained using an attention
mechanism (and similarly for Aw,v):

êi,j = ζ(W3xv,i,W3xw,j), (7)

α̂i,j =
exp(êi,j)∑mw

k=1 exp(êi,k)
, (8)

where ζ is an update function (such as a neural network), for which we use
a simple mean. After obtaining the cross-encoding weights, we apply feature
filtering, a self-attention mechanism that filters important features. The filtering
vector is obtained as βv = sigmoid(W4tanh(W5X

T
v )), where W4 and W5 are

learnable weights (βw is obtained similarly). We apply the feature-filtering vector
to the cross-encoding matrix as follows:

Lv,w = [diag(βv)(Av,wXw −Xv)]� [diag(βv)(Av,wXw −Xv)], (9)

where � denotes the Hadamard product (Lw,v is also obtained similarly). The
Lv,w ∈ Rmv×d and Lw,v ∈ Rmw×d matrices come from the Euclidean distance
between the cross-encoding of Xv into Xw and Xw, and therefore are a measure
of the closeness of the original sequence logs of v and w.

To obtain a size-independent comparison metric, we apply a multi-layer per-
ceptron (MLP) along the feature dimension of L matrices (the second dimension,
d), followed by a max-pooling operation along the first dimension. Finally, we
apply a dropout and a ReLU nonlinearity. This yields vectors rv,w and rw,v that
have a fixed size for any pair of v and w. For the final pairwise classification
task, we concatenate rv,w and rw,v and pass it through an MLP followed by a
sigmoid activation to determine if the two devices belong to the same user or
not:

ŷ = sigmoid(MLP(rv,w||rw,v)). (10)

4 Experiment

In this section, we will describe the dataset, training details, and discuss how
our method outperforms all other baselines, including TGCE [6], the previous
state-of-the-art.
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Fig. 3: Pairwise device graph matching: After the message passing, the two
device graphs are cross-encoded via an attention mechanism followed by an
attention-based feature filtering. The resulting matrix for each graph is then
passed through an MLP layer, acting along the feature, followed by a maxpool
operator along the nodes. Next, the obtained vectors pass through a dropout
layer followed by an activation function. Finally, the resulting vectors of the two
graphs are concatenated and passed through an MLP to obtain the final output.

4.1 Training details

We studied the cross-device user matching dataset made publicly available by
the Data Centric Alliance§ for the CIKM Cup 2016 competition. The dataset
consists of 14,148,535 anonymized URL logs of different devices with an average
of 197 logs per device. The dataset is split into 50,146 and 48,122 training and
test device logs, respectively. To obtain the initial embeddings of each URL, we
applied the same data preprocessing methods as in [6,11]. We used a coarse-to-
fine node ratio of k = 6, a batch size of 800 pairs of device logs, a learning rate
of 10−3, and trained the model for 20 epochs. We used the binary cross-entropy
(BCE) loss function for training our model. The training, evaluation, and test
were all executed on an A100 NVIDIA GPU. The BCE loss during training as
well as the validation F1 score are shown in Figures 4 and 5, respectively.

4.2 Results

In this section, we evaluate the precision, recall, and F1 score of our method on
the test set and compare it to available baselines. All of the baselines have been
obtained similarly as described in [6]. We present two variants of our method;
the first one, which we label “HGNN”, only differs from TGCE in the design
of the second tier, i.e., we use the hierarchical structure presented in subsec-
tions 3.2 and 3.3, followed by the rest of the TGCE architecture. The second
variant, which we label “HGNN+Cross-Att”, uses the hierarchical structure in

§https://competitions.codalab.org/competitions/11171
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Fig. 4: Binary cross-entropy loss of our proposed method against that of TGCE.
During training, our method obtains strictly better loss values.
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Fig. 5: Validation F1 score during training. Throughout the training, our method
achieves strictly better F1 scores for the validation set compared to that of
TGCE.
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subsections 3.2 and 3.3, and also utilizes the cross-attention mechanism pre-
sented in subsection 3.4 after the hierarchical structure. As shown in Table 1,
the “HGNN+Cross-Att” variant outperforms all of the baselines on the F1 score
metric, including the second-best method (TGCE) by 5% on the test data.

Table 1: Precision, Recall, and F1 score of different methods for cross-device user
matching on DCA dataset.

Precision at Best
F1 Score

Recall at Best
F1 Score

Best
F1 Score

TF-IDF 0.33 0.27 0.26
Doc2vec 0.29 0.21 0.24
SCEmNet 0.38 0.44 0.41

GRU 0.37 0.49 0.42
Transformer 0.39 0.47 0.43
SR-GNN 0.35 0.34 0.34
LESSER 0.41 0.48 0.44
TGCE 0.49 0.44 0.46

HGNN (ours) 0.48 0.43 0.45
HGNN+Cross-Att

(ours) 0.57 0.48 0.51

We also compare the training time of the two variants of our method with
that of TGCE. As shown in Table 2, our hierarchical structure is significantly
more efficient than that of TGCE while keeping a competitive F1 score. Table 2
essentially indicates that by simply replacing the second-tier design of TGCE
with our hierarchical structure (presented in subsections 3.2 and 3.3), the method
becomes 6x faster while almost keeping the same performance. This is due to
the large number of artificial edges generated in the random walk passes in
the creation of the second tier of TGCE. Moreover, although including cross-
attention slows down the model, we can still obtain the same training time as
TGCE and achieve 5% better overall F1 score.

Figure 6 shows the precision-recall curve of our method (the HGNN+Cross-
Att variant, trained for 6 epochs) with that of TGCE (trained for 20 epochs).
As shown in the figure, the precision-recall curve of our method is strictly better
than that of TGCE. In other words, for every recall score, our method has a
better precision. Additionally, we further trained the HGNN+Cross-Att variant
for 20 epochs (the same number of epochs TGCE was trained for) to study if
any further improvement is achieved on the test set. We also plot the F1 score
with different thresholds (from 0 to 1 incremented by 0.01) for our model trained
for 6 and 20 epochs and compare it to that of TGCE. As shown in Figure 7,
our model trained for 20 epochs strictly outperforms TGCE (also trained for
20 epochs) for every threshold for obtaining the F1 score. However, our model
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Table 2: Best F1 score and end-to-end training time of HGNN (without Cross-
Att), HGNN+Cross-Att, and TGCE. The HGNN model is 6x faster than TGCE
with a slight trade-off (about 1%) on the accuracy side. The HGNN+Cross-Att
model has the same training time as TGCE while achieving 5% better F1 score.

Best
F1 Score

End-to-end
Training Time

Number of
Epochs

TGCE 0.46 60h 20
HGNN (ours) 0.45 10h 20

HGNN+Cross-Att
(ours) 0.51 60h 6

trained for 6 epochs achieves the best overall F1 score, which is 5% higher than
TGCE. This is significant since as shown in Table 2, the model takes the same
time as TGCE to train.
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Fig. 6: Precision-Recall curve of the proposed method and that of TGCE on the
test data.
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Fig. 7: F1 score against rounding threshold for our method (both for networks
trained for 6 and 20 epochs) compared to that of TGCE (trained for 20 epochs).
When our model is trained for 6 epochs, it achieves the highest overall F1 score,
which is about 5% better than that of TGCE. However, if our model is trained for
20 epochs, it achieves higher F1 scores for a wider range of rounding thresholds,
outperforming TGCE for every rounding threshold.

5 Conclusions

In this paper, we present a novel graph neural network (GNN) architecture for a
demanding entity resolution task: cross-device user matching, which determines
if two devices belong to the same user based only on their anonymized internet
logs. Our method comprises of designing an effective hierarchical structure for
achieving long-range message passing in the graph obtained from device URL
logs. After passing device logs through such a hierarchical GNN, we employ a
cross-attention mechanism to effectively compare device logs against each other
to determine if they belong to the same user. We demonstrate that our method
outperforms available baselines by at least 5%, while having the same training
time as the previous state-of-the-art method, establishing the effectiveness of our
proposed method.
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