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Abstract. Clustering is a commonplace problem in many areas of data science, with applica-
tions in biology and bioinformatics, understanding chemical structure, image segmentation, building
recommender systems, and many more fields. While there are many different clustering variants
(based on given distance or graph structure, probability distributions, or data density), we consider
here the problem of clustering nodes in a graph, motivated by the problem of aggregating discrete
degrees of freedom in multigrid and domain decomposition methods for solving sparse linear systems.
Specifically, we consider the challenge of forming balanced clusters in the graph of a sparse matrix for
use in algebraic multigrid, although the algorithm has general applicability. Based on an extension
of the Bellman-Ford algorithm, we generalize Lloyd’s algorithm for partitioning subsets of Rn to
balance the number of nodes in each cluster; this is accompanied by a rebalancing algorithm that
reduces the overall energy in the system. The algorithm provides control over the number of clusters
and leads to “well centered” partitions of the graph. Theoretical results are provided to establish
linear complexity and numerical results in the context of algebraic multigrid highlight the benefits
of improved clustering.
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1. Introduction. Consider a directed graph G(V,E,W ) where V is a set of
nodes (or vertices), V = {1, . . . , Nnode}, and where E is a list of edges given by
E = {(i, j) | Wi,j 6= 0} for some weight matrix W . The (sparse) weight matrix W is
assumed to have non-negative off-diagonal entries and zero diagonal entries. The goal
of this work is to define a set of clusters that minimizes a given energy functional with
linear complexity in the number of nodes. In subsection 3.1, the maximum cluster
diameter is used to define the energy.

There are an array of challenges in clustering; the focus here is twofold: (1)
developing efficient algorithms where the number of clusters Ncluster can be specified;
and (2) generating clusterings that are considered “well balanced”. As a motivating
example, we consider a graph generated from a finite-element discretization on a
unit disk with 528 vertices1. Figure 1 illustrates the clustering of nodes using four
different methods that underscore these two challenges. Nearest-neighbor (or Greedy)
clustering [26] yields 63 clusters in this case. While this simple algorithm lacks control
of the number of clusters, the clustering offers a clear balance in the number of nodes
per cluster and total diameter of each cluster. In contrast, with Ncluster = 52 the
spectral-based partitioner METIS [10] yields long clusters (and large diameters).

In this work, we focus on shortest-path based clustering algorithms. Lloyd clus-
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Greedy METIS Lloyd Balanced Lloyd

Fig. 1. Example clusterings.

tering (also known as Lloyd aggregation) [4], for example, uses Bellman-Ford [8] to
construct Ncluster = 52 clusters based on an initial seeding. Overall clustering qual-
ity depends highly on the initial seeding; often even costly O(N3

node) algorithms for
seeding, such as k-means++ [1], do not dramatically improve the final clustering in
this case. Lastly, we highlight clustering based on an algorithm introduced here: a
balanced form of Lloyd clustering with rebalancing to minimize diameter. While stan-
dard Lloyd clustering results in both large and small clusters, the cluster shapes with
balanced Lloyd clustering and rebalancing are more consistent.

While there is a long history of aggregation-based multigrid methods (cf. [15,
25, 26, 17]), surprisingly little attention has been paid to the influence of cluster
quality on the performance of the resulting algorithm. The greedy clustering algorithm
originally proposed in [15] has become a standard approach that is used in many
codes. Some variants on this approach have been introduced for massively parallel
settings; most notably, approaches based on distance-two maximal independent sets
in the graph [24, 2, 11]. Both of these approaches make minimal use of the weight
matrix, W , aside from using its nonzero pattern to infer binary connectivity data in
the graph. In contrast, in [4], Lloyd’s algorithm [12] was extended from computing
Voronoi diagrams in Rn to computing clusters in graphs, using the values in W to
define graph distances. It is this approach that we extend here.

In this paper, we introduce a general clustering method for use in graph partition-
ing and algebraic multigrid that provides control of the number of clusters, yields “cen-
tered” clusters, and can be implemented with off-the-shelf codes for Bellman-Ford and
Floyd-Warshall algorithms [8]. All algorithms are implemented in and are available
through the open source package PyAMG [3]. In section 2, we review aggregation-
based algebraic multigrid (AMG) and survey the greedy, maximal independent set,
and Lloyd clustering algorithms. Section 3 introduces balanced Lloyd clustering and
a rebalance algorithm, along with theoretical evidence of convergence and complex-
ity. Finally, section 4 provides numerical evidence in support, expanding the example
in Figure 1 and others.

Note: throughout the paper and embedded in the algorithms, we make use of the
notation listed in Table 2.

2. Clustering in algebraic multigrid. Algebraic multigrid methods are a fam-
ily of iterative methods for the solution of sparse linear systems of the form Au = f ,
where A is an Nnode × Nnode matrix and u and f are vectors of dimension Nnode.
Like all multigrid methods, they achieve their efficiency through the use of two com-
plementary processes, known as relaxation and coarse-grid correction. For algebraic
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multigrid methods, we typically consider a fixed relaxation scheme (such as a sta-
tionary weighted Jacobi or Gauss-Seidel iteration on the linear system) and seek to
compute a coarse-grid correction process that adequately complements relaxation to
lead to an efficient solution algorithm. In aggregation-based methods, the coarse-grid
correction process takes the form of first computing a clustering of the fine-grid de-
grees of freedom (nodes in the graph of the sparse matrix, A), and then computing
an interpolation operator from the clustered degrees of freedom to those on the fine
grid. Rootnode-based aggregation methods additionally make use of a center that
is identified for each cluster [14]. For a more thorough review of algebraic multigrid
methods, see Appendix A or [7, 23].

Figure 1 illustrates the wide range of clusters that can arise for a single problem.
We next detail three common approaches to clustering (used in the context of AMG),
before introducing a balanced method in the next section. First, however, we define
a clustering or aggregation of G(V,E,W ), as in Definition 2.1. We note that the
clustering is a non-overlapping covering.

Definition 2.1. A clustering or aggregation of the connected graph G(V,E,W )
is a pair (m, c), where mi is the cluster membership of vertex i and ca is the global
index of the center for cluster a. Then m and c have the following properties:

1. For each i ∈ {1, . . . , Nnode}, there exists a unique a with 1 ≤ a ≤ Ncluster

such that mi = a;
2. For each a ∈ {1, . . . , Ncluster}, for every (i, j) with mi = mj = a, there

exists a sequence k1, . . . , kp where mk = a for k ∈ {k1, . . . , kp} and with
(i, k1), (kq, kq+1), (kp, j) ∈ E for q ∈ {1, . . . , p− 1}; and

3. For each a ∈ {1, . . . , Ncluster}, we have 1 ≤ ca ≤ Nnode and mca = a.
The first point ensures that the clustering is a non-overlapping covering, the second
requires that the subgraph over the cluster remains connected, and the third confirms
that an element of each cluster is identified as the center for that cluster.

2.1. Greedy clustering. Greedy clustering (also known as “greedy aggrega-
tion” or “standard aggregation”) was first introduced by Mı́ka and Vaněk [15]; we
use a close variant. Greedy clustering consists of two passes over the set of nodes
of the graph. In the first pass, for each node, if all neighbors in the graph remain
unclustered, then the node becomes a center, forming a cluster from the node and its
neighborhood. In the second pass, each unclustered node is included in a neighboring
cluster, if possible. If a neighboring cluster is not found, then the unclustered node
is considered a center node and the node with its unclustered neighbors form a new
cluster. In the case of multiple neighboring clusters, there are several options: arbi-
trary selection, index, size, or magnitude of the weight can each be used to determine
cluster membership. The full greedy algorithm is given in Algorithm 2.1.

2.2. Maximal independent set based clustering. The greedy algorithm is
inherently serial, yet there are two immediate observations. First, any two center
nodes of two (distinct) clusters must be more than two edges apart. Second, if an
unclustered node is more than two edges from any existing center, then the node is
eligible to be a center of a new cluster. Hence, the center nodes from the greedy
algorithm represent a distance-2 maximal independent set or MIS(2). This leads to
the MIS(2) clustering algorithm, where an MIS(2) over the nodes is first constructed,
followed by construction of the clustering using the MIS(2) center nodes. This has
been shown to exhibit a high degree of parallelism [2]; see [2, Algorithm 5] for details.

Given a distance-2 maximal independent set, the clustering process is straightfor-
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Algorithm 2.1 Greedy clustering. See Table 2 for variable definitions.

1: function greedy-clustering(W )
2: mi ← 0 for all i = 1, . . . , Nnode . initially all nodes are unclustered
3: a← 0 . first cluster index
4: for i← 1, . . . , Nnode do . first pass
5: if mi = 0 and mj = 0 for all j s.t. Wi,j 6= 0 then . unclustered
6: mi ← a . add i and neighbors to cluster a
7: mj ← a, for all j s.t. Wi,j 6= 0
8: ca ← i . mark cluster center
9: a← a+ 1 . increment cluster index

10: for i← 1, . . . , Nnode do . second pass
11: if mi = 0 then . unclustered
12: if ∃ j s.t. Wi,j 6= 0 and mj > 0 then . clustered neighbor
13: j ← argmax

j :mj>0
Wi,j . neighbor with largest weight

14: mi ← mj

15: else . form new cluster
16: mi ← a
17: for j such that Wi,j 6= 0 and mj = 0 do
18: mj ← a

19: a← a+ 1 . increment cluster index

20: return m, c

ward. In the first step, the index of the cluster representing the center is propagated
to its neighbors. This continues in the second step, where the index of the cluster is
propagated to the second layer of neighbors; if there are multiple clusters adjacent to
an unclustered node, the choice is made arbitrarily (or by index). The algorithm is
shown in Algorithm 2.2.

Algorithm 2.2 MIS(2) clustering. See Table 2 for variable definitions.

1: function mis(2)-clustering(W )
2: c← mis(W , 2) . distance-2 independent set
3: mi ← 0 for i = 1, . . . , Nnode

4: Ncluster ← |c|
5: for a = 1, . . . , Ncluster do . pass 1: distance-1
6: i← ca . index of center for cluster a
7: mi ← a . set cluster number for center
8: for j s.t. Wi,j 6= 0 do
9: mj ← a . set cluster number for neighbors

10: for i s.t. mi > 0 do . pass 2: distance-2
11: for j s.t. Wi,j 6= 0 and mj = 0 do
12: mj ← mi . set cluster number for neighbors

13: return m, c

With an appropriate ordering, the first pass of MIS-based and greedy clustering
can yield identical clusters. With only minor differences in the second pass, we expect
the clustering patterns to be similar. Indeed, the convergence factors of AMG based
on these two clustering strategies are shown to be close in practice [2, Appendix].
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2.3. Standard Lloyd clustering. A shortcoming of the previous two clustering
strategies is the inability to control the coarsening rate: the number of clusters is
an outcome of the algorithm, rather than an input. In contrast, Lloyd clustering,
introduced in [4], is based on an initial seeding of centers (of any length). Lloyd
clustering can be viewed as an extension of Lloyd’s algorithm [12] applied to graphs,
where an initial random seeding of centers yields Voronoi cells (or a set of nodes closest
to each center), followed by a recentering of center locations.

A full algorithm is given in Algorithm 2.3, where a subset of Ncluster nodes are
randomly selected as the initial centers, input as c. A standard Bellman-Ford algo-
rithm (see Algorithm 2.4 and [8, Section 8.7]) is used to find the distance and index
of the closest center; the set of points closest to each center form the initial cluster-
ing. Next, the border nodes of each cluster are selected and a modified form of the
Bellman-Ford algorithm then identifies the (new) center — see Algorithm 2.5 — by
selecting the node of maximum distance to the cluster boundary (with ties selected
arbitrarily). The steps are repeated until the algorithm has converged or a maximum
number of iterations (given as Tmax) is reached.

Algorithm 2.3 Lloyd clustering algorithm. See Table 2 for variable definitions.

1: function lloyd-clustering(W, c, Tmax)
2: t = 0
3: repeat
4: m, d← bellman-ford(W, c) . find closest centers
5: c← most-interior-nodes(W,m) . recenter
6: t = t+ 1
7: until t = Tmax or no change in c and m
8: return m, c

Algorithm 2.4 Bellman-Ford algorithm to compute distance and index of closest
center. See Table 2 for variable definitions.

1: function bellman-ford(W, c)
2: di ←∞ for all i = 1, . . . , Nnode . initial distance
3: mi ← 0 for all i = 1, . . . , Nnode . initial membership undefined
4: for a← 1, . . . , Ncluster do
5: i← ca . cluster a has center node i
6: di ← 0 . distance of a center node to itself is zero
7: mi ← a . center node i belongs to its own cluster

8: repeat
9: done← true

10: for i, j such that Wi,j > 0 do . all pairs of adjacent nodes
11: if di +Wi,j < dj then . node j is closer to i’s center
12: mj ← mi . switch node j to the same cluster as i
13: dj ← di +Wi,j . use the shorter distance via node i
14: done← false . change was made; do not terminate

15: until done
16: return m, d

2.3.1. Theoretical observations. A significant advantage of standard Lloyd
clustering, as in Algorithm 2.3, is the dependence on off-the-shelf algorithms such as
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Algorithm 2.5 Find the most-interior node (furthest from boundary) for each cluster.
See Table 2 for variable definitions.

1: function most-interior-nodes(W,m)
2: B ← {} . border nodes
3: for i, j such that Wi,j > 0 do . all pairs of adjacent nodes
4: if mi 6= mj then . are nodes i and j in different clusters?
5: B ← B ∪ {i, j} . if so, add both of them to the border set

6: ·, d← bellman-ford(W,B) . d is distance from cluster borders
7: for i← 1, . . . , Nnode do
8: a← mi . a is the cluster index for node i
9: ca ← i . assign the highest-index node as cluster center

10: for i← 1, . . . , Nnode do
11: a← mi . a is the cluster index for node i
12: j ← ca . j is the current cluster center
13: if di > dj then . is node i further from the border than j?
14: ca ← i . if so, node i is the new cluster center

15: return c

Bellman-Ford. This allows us to establish key properties that will carry over to more
advanced algorithms in the next section.

To begin, we note that standard Bellman-Ford terminates (in Theorem 2.2), an
important property to maintain as we seek more balanced clusters.

Theorem 2.2. Algorithm 2.4 terminates.

Proof. This is a standard result [8, Section 8.7].

Likewise, while we assume the initial graph is connected, Definition 2.1 requires each
of the clusters to be connected. Bellman-Ford provides this, as summarized in Theo-
rem 2.3.

Theorem 2.3. The clusters returned by Algorithm 2.4 are connected.

Proof. This follows from the proof of Theorem 3.1, using only the first case in the
proof corresponding to Line 9 in Algorithm 3.4.

3. Balanced Lloyd clustering. Lloyd clustering in subsection 2.3 enables the
construction of a variable number of clusters, based on the initial seeding. Yet, the
method can result in poor quality clusters (cf. Figure 1). As an example, consider
a nearest-neighbor weight matrix W based on distance and on a 6 × 6 structured
mesh. Figure 2 illustrates two common scenarios in standard Lloyd clustering. The
first is the emergence of long, narrow clusters. This is, in part, due to the method
of finding boundaries in most-interior-nodes; in this case, the entire cluster (left
figure) is comprised of boundary nodes, leaving no opportunity to re-center. The
second artifact of standard Lloyd is that of disparate cluster sizes. Here, we observe
both large clusters and clusters of a single point (right figure). An immediate goal in
the algorithms of this section is to address these two points.

The Bellman-Ford algorithm is the central component of standard Lloyd, finding
the shortest path for each seed and to find distal points for each boundary node in a
cluster. In the following, we introduce a new method for centering nodes (see Algo-
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Fig. 2. Two example clusterings from Lloyd clustering on a 6× 6 mesh.

rithm 3.5), where we seek to minimize the total energy defined by

(3.1) H =

Nnode∑
i=1

d2
i ,

where di is defined to be the distance from node i to the center of the cluster for
node i, namely ca where cluster a satisfies a = mi. This requires the computation
of the shortest path for each pair of nodes in the cluster, a.k.a. the all-pairs shortest
path problem. For this we turn to a per-cluster use of Floyd-Warshall [8] as detailed
in Algorithm 3.1.

Algorithm 3.1 Floyd-Warshall algorithm [8, Section 9.8] to find inter-node distances
within each cluster. See Table 2 for variable definitions.

1: function clustered-floyd-warshall(W,m)
2: Va ← {i | mi = a} for all a = 1, . . . , Ncluster . nodes in cluster a
3: for a← 1, . . . , Ncluster do
4: for i, j ∈ Va do
5: Di,j ←∞ . initial distance i→ j
6: Pi,j ← 0 . initial predecessor node for i→ j
7: if Wi,j > 0 then
8: Di,j ←Wi,j . adjacent nodes have the adjacency distance
9: Pi,j ← i . the predecessor is the tail node for adjacent pairs

10: if i = j then
11: Di,i ← 0 . nodes are distance zero from themselves
12: Pi,i ← i . nodes are their own predecessors to themselves

13: for k ∈ Va do . potential intermediate node on the path i→ j
14: for i, j ∈ Va do . all other node pairs within the cluster
15: if Di,k +Dk,j < Di,j then . i→ k → j shorter than i→ j
16: Di,j ← Di,k +Dk,j . switch to the shorter distance
17: Pi,j ← Pk,j . take the predecessor from k → j

18: return D,P

For cluster a, we note that the calculation of shortest paths in Algorithm 3.1 is
O(s3

a), where sa = |{i | mi = a}| is the size of cluster a. In the following section, we
establish linear complexity in the number of nodes, Nnode, with assumptions on the
maximum cluster size.

The introduction of energy as a target (see (3.1)) provides an opportunity to re-
balance the clustering to account for small or large clusters. For this, we introduce a
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rebalancing algorithm that calculates the energy increase in splitting clusters and the
energy decrease in eliminating clusters. The overall process relies on the distances from
Floyd-Warshall. In subsection 3.1, a balanced version of Bellman-Ford is introduced,
leading to a balanced form of Lloyd clustering. The rebalancing algorithm is con-
structed in subsection 3.2 followed by theoretical observations. The rebalanced Lloyd
algorithm requires several components and we summarize the dependence in Figure 3.

lloyd-clustering bellman-ford

most-interior

balanced-lloyd-clustering balanced-initialization

balanced-bellman-ford

center-nodes

clustered-floyd-warshall

rebalanced-lloyd-clustering rebalance

elimination-penalty

split-improvement

mark-unavailable

Fig. 3. Algorithm dependence. Rebalancing components are highlighted in red.

3.1. Balanced algorithms. One disadvantage of Lloyd clustering is that the
clusters are not guaranteed (nor expected) to be uniformly sized. In many practical
settings, a node is likely to have nearly the same distance to multiple centers. In
this case, Lloyd clustering randomly assigns the node to a cluster; in contrast, bal-
anced Lloyd clustering targets uniformly sized clusters, as described in Algorithm 3.2.
In the balanced approach, if a node has the same distance to different centers, the
node is assigned to a smaller cluster, leading to increased uniformity across clusters.
Specifically, Floyd-Warshall (Algorithm 3.1) replaces balanced Bellman-Ford (see Al-
gorithm 3.4) to compute the centroid of each cluster. A node of a cluster having the
minimum sum of squared distance to other cluster nodes is taken as centroid of that
region (Algorithm 3.5). Consequently, long, narrow clusters as in Figure 2 will expose
centers near the true center, whereas the boundary-distances used in standard Lloyd
clustering leave any boundary centers unchanged.

Note that on Line 11 of Algorithm 3.4, the condition di + Wi,j = dj should be
implemented using an approximate comparison if floating point arithmetic is being
used.

3.2. Rebalancing clustering. Balanced Lloyd clustering improves the unifor-
mity and roundness of the clusters in the Lloyd clustering. Yet there there is no
guarantee that the energy is minimized across clusters, due to the initial seeding.
In this section, we develop a rebalancing algorithm that reduces the overall energy
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Algorithm 3.2 Balanced version of Lloyd clustering. See Table 2 for variable defini-
tions.

1: function balanced-lloyd-clustering(W, c, Tmax, TBFmax)
2: m, d, p, n, s← balanced-initialization(c,Nnode)
3: t = 0
4: repeat
5: m, d, p, n, s← balanced-bellman-ford(W,m, c, d, p, n, s, TBFmax)
6: D,P ← clustered-floyd-warshall(W,m)
7: c, d, p, n← center-nodes(W,m, c, d, p, n,D, P )
8: t = t+ 1
9: until t = Tmax or no change in any of m, c, d, p, n, s

10: return m, c, d, p, n, s,D, P

Algorithm 3.3 Initialization for balanced algorithms. See Table 2 for variable defi-
nitions.

1: function balanced-initialization(c,Nnode)
2: mi ← 0 for all i = 1, . . . , Nnode . cluster membership for node i
3: di ←∞ for all i = 1, . . . , Nnode . distance to node i from its cluster center
4: pi ← 0 for all i = 1, . . . , Nnode . predecessor node for node i
5: ni ← 0 for all i = 1, . . . , Nnode . number of predecessor nodes for node i
6: sa ← 1 for all a = 1, . . . , Ncluster . size of cluster a
7: for a← 1, . . . , Ncluster do
8: i← ca . i is the center node index for cluster a
9: di ← 0 . distance of center to node i from itself is zero

10: mi ← a . center node i belongs to its own cluster
11: pi ← i . centers are their own predecessors
12: ni ← 1 . centers have one predecessor

13: return m, d, p, n, s

in the clustering by splitting clusters into two and reducing energy, and by elimi-
nating clusters leading to an increase in energy. The trade-off maintains a constant
number of clusters, but reduces the total energy in the clustering. The rebalanced
Lloyd algorithm is given in Algorithm 3.6 and the rebalancing algorithm itself is given
in Algorithm 3.7.

The algorithm relies on two calculations, the first being in Algorithm 3.8, which
iterates through each cluster and calculates the energy penalty (increase) resulting
from eliminating a cluster and merging each node with its nearest cluster. The nearest
cluster of a node is defined based on the distance of the centre of the cluster from
the node. Similarly, Algorithm 3.9 computes the energy improvement (decrease) from
optimally splitting each cluster into two clusters. Here, we determine the splitting (of
each cluster) that results in the lowest energy by considering all possible pairs of new
centers within the cluster.

With measures on the penalties and improvements in energy, the rebalancing
algorithm proceeds by eliminating and splitting clusters in pairs, thereby reducing the
total energy while keeping the number of clusters constant. At first, it eliminates the
cluster with the smallest elimination penalty and splits the cluster with the largest
split improvement, if these are distinct clusters. It then proceeds to eliminate the
cluster with the second-smallest penalty and split the one with the second-largest
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Algorithm 3.4 Balanced version of Bellman-Ford. See Table 2 for variable defini-
tions.

1: function balanced-bellman-ford(W,m, c, d, p, n, s, TBFmax)
2: t← 0; z(t) ← z for all variables z . only for use in proofs
3: repeat
4: done← true
5: for i, j such that Wi,j > 0 do . all pairs of adjacent nodes
6: si ← smi

if mi > 0, else 0 . size of cluster containing node i
7: sj ← smj

if mj > 0, else 0 . size of cluster containing node j
8: switch← false
9: if di +Wi,j < dj then . j is closer to i’s center than its own

10: switch← true
11: if di +Wi,j = dj then . distance to j is similar from i’s center
12: if si + 1 < sj then . node i’s cluster is smaller (by 2 or more)
13: if nj = 0 then . node j is free to switch (not a predecessor)
14: switch← true
15: if switch then
16: smi ← si + 1, smj ← sj − 1 . update cluster sizes
17: mj ← mi . switch node j to the same cluster as i
18: dj ← di +Wi,j . use the distance via node i
19: ni ← ni + 1, npj ← npj − 1 . update predecessor counts
20: pj ← i . predecessor of node j is now i
21: done← false . change was made; do not terminate

22: t← t+ 1; z(t) ← z for all variables z . only for use in proofs

23: until t = TBFmax or done
24: T ← t . only for use in proofs
25: return m, d, p, n, s

improvement, again assuming they are distinct. This process continues until the
energy will no longer be decreased (i.e., the next elimination penalty would be greater
than or equal to the next split improvement), at which point rebalancing terminates.
To access the clusters in sorted order we use an argsort(L) function that returns
the array of indexes [i1, i2, . . .] so that Li1 , Li2 , . . . will be in sorted order.

During rebalancing, we assume that the elimination penalties and split improve-
ments of the clusters do not change as we are actually eliminating and splitting other
clusters. However, the penalty and improvement of cluster a depend on its neighbor-
ing clusters. For this reason, when we eliminate or split a cluster, we mark all of its
neighbors as unavailable for being eliminated or split themselves. This ensures that
the penalties and improvement values remain correct for all clusters that are under
consideration for elimination or splitting at each step.

3.3. Theoretical observations. We have formulated the balanced Bellman-
Ford algorithm with a cap on the maximum number of iterations, which will be
necessary for proving linear complexity in Theorem 3.6. In practice TBFmax can be
chosen to be the maximum expected cluster radius and implementations should warn
if Algorithm 3.4 reaches this limit, as this may indicate that the clusters are not
connected. This observation relies on the following result.

Theorem 3.1. The clusters returned by Algorithm 3.4 are connected if it termi-
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Algorithm 3.5 Update center nodes to be the cluster centroids. See Table 2 for
variable definitions.

1: function center-nodes(W,m, c, d, p, n,D, P )
2: Va ← {i | mi = a} for all a = 1, . . . , Ncluster . nodes in cluster a
3: for a = 1, . . . , Ncluster do . treat each cluster a separately
4: for i ∈ Va do
5: qi ←

∑
j∈Va

(Di,j)
2 . sum of squared distances to other cluster nodes

6: i← ca . current cluster center
7: for j ∈ Va do . test node j as a new cluster center
8: if qj < qi then . does node j have a strictly better metric?
9: i← j . j will be the new cluster center

10: if i 6= ca then . have we found a new center?
11: ca ← i
12: nj ← 0 for all j ∈ Va . reset predecessor counts
13: for j ∈ Va do . update data for all nodes in the cluster
14: dj ← Di,j

15: pj ← Pi,j
16: npj ← npj + 1

17: return c, d, p, n

Algorithm 3.6 Rebalanced version of Lloyd clustering. See Table 2 for variable
definitions.

1: function rebalanced-lloyd-clustering(W, c, Tmax, TBFmax)
2: t = 0
3: repeat
4: m, c, d, p, n, s,D, P ← balanced-lloyd-clustering(W, c, Tmax, TBFmax)
5: c← rebalance(W,m, c, d, p,D)
6: t = t+ 1
7: until t = Tmax or no change in c
8: return m, c, d, p, n, s,D, P

nates before the maximum number of iterations.

Proof. The proof relies on understanding the state of the variables within Algo-
rithm 3.4 as the algorithm iterates. We denote this by using a superscript, z(t) to
indicate the state of variable z at a given “time”, t, in the algorithm, with time T
denoting completion.

We wish to show that, for each j, m
(T )
j = m

(T )
i where i = p

(T )
j , which ensures that

the predecessor-paths to cluster centers are contained within each cluster. Suppose
not and let t be the last iteration when mj and pj were updated by Lines 17 and 20.

Taking i = p
(t)
j we have m

(t)
i = m

(t)
j = m

(T )
j 6= m

(T )
i so there must be a later t′ > t

at which mi was updated for the last time. At this later time, we must have at least
one of the following cases.

Case 1: condition on Line 9 is true. Then d
(t′)
i < d

(t)
i , and so d

(t′)
i + Wi,j <

d
(t)
i +Wi,j = d

(t)
j = d

(T )
j . This is a contradiction because we cannot have dj > di+Wi,j

when the algorithm terminates.

Case 2: conditions on Lines 11 and 13 are true. Then n
(t′)
i = 0, which is impos-
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Algorithm 3.7 Rebalance clusters by eliminating low-energy clusters and splitting
the same number of high-energy clusters in two. See Table 2 for variable definitions.

1: function rebalance(W,m, c, d, p,D)
2: Va ← {i | mi = a} for all a = 1, . . . , Ncluster . nodes in cluster a
3: L← elimination-penalty(W,m, d,D)
4: (S, c1, c2)← split-improvement(m, d,D)
5: Ma ← true for all a← 1, . . . , Ncluster . all clusters are modifiable
6: Lsort ← argsort(L)
7: Ssort ← argsort(S)
8: iL ← 1 . sorted index of cluster to eliminate
9: iS ← Ncluster . sorted index of cluster to split

10: while iL ≤ Ncluster and iS ≥ 1 do
11: aL ← Lsort

iL
. cluster to eliminate

12: aS ← Ssort
iS

. cluster to split
13: if not MaL or aL = aS then . is cluster aL modifiable and distinct?
14: iL ← iL + 1
15: continue
16: if not MaS then . is cluster aS modifiable?
17: iS ← iS − 1
18: continue
19: if LaL ≥ SaS then . will the energy not decrease?
20: break
21: mark-unavailable(aL,M,W, VaL)
22: mark-unavailable(aS ,M,W, VaS)
23: caL ← c1aS . eliminate cluster aL

24: caS ← c2aS . split cluster aS

25: return c

sible since p
(t′)
j = p

(t)
j = i.

To understand the behavior of the balanced algorithms, we consider a modified
energy that includes a second term for the cluster sizes. Define

(3.2) Hδ =

Nnode∑
i=1

(di)
2 + δ

Ncluster∑
a=1

(sa)2,

where di is the distance from node i to its cluster center, sa = |{i | mi = a}| is the
size (number of nodes) of cluster a, and

(3.3) δ =

(
∆min

Nnode

)2

is chosen based on the minimum difference, ∆min, between distinct values of Wi,j (or
an arbitrarily small positive number if there are no distinct values of Wi,j). The first
term in (3.2) is the sum of squared distances from nodes to their cluster centers, while
the second term is the sum of squared cluster sizes. Note that δ is chosen so that the
second term in (3.2) is always less than the minimum possible increment in the first
term.

Lemma 3.2. Algorithm 3.4 results in a decrease of the energy (3.2), or preserves
the energy if no change is made to the clustering.
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Algorithm 3.8 Calculate the energy increase that would result from eliminating each
cluster. See Table 2 for variable definitions.

1: function elimination-penalty(W,m, d,D)
2: Va ← {i | mi = a} for all a = 1, . . . , Ncluster . nodes in cluster a
3: for a = 1, . . . , Ncluster do
4: La ← 0 . energy penalty for eliminating cluster a
5: for i ∈ Va do
6: dmin ←∞ . minimum distance to a different cluster center
7: for j ∈ Va do . look for connectivity via j
8: for k such that Wk,j > 0 do . all neighbors of j
9: if mk 6= mj then . is k in a different cluster to j?

10: if dk +Wk,j +Dj,i < dmin then . is k’s center closer?
11: dmin ← dk +Wk,j +Dj,i

12: La ← La + (dmin)2 . add the new energy for i

13: La ← La −
∑
i∈Va

(di)
2 . subtract the current energy metric

14: return L

Algorithm 3.9 Calculate the energy decrease that would result from optimally split-
ting each cluster in two. See Table 2 for variable definitions.

1: function split-improvement(m, d,D)
2: Va ← {i | mi = a} for all a = 1, . . . , Ncluster . nodes in cluster a
3: for a = 1, . . . , Ncluster do
4: Sa ←∞ . energy improvement for splitting cluster a
5: for i ∈ Va do . first possible new center
6: for j ∈ Va do . second possible new center
7: Snew ← 0 . energy with centers i and j
8: for k ∈ Va do . compute cost for node k
9: if Di,k < Dj,k then . is k closer to center i or j?

10: Snew ← Snew + (Di,k)2

11: else
12: Snew ← Snew + (Dj,k)2

13: if Snew < Sa then . is this a better split?
14: Sa ← Snew . store the new energy
15: c1a ← i . store the new centers i and j
16: c2a ← j

17: Sa ←
∑
i∈Va

(di)
2 − Sa . improvement from current cluster energy

18: return S, c1, c2

Proof. We will show that all steps in the algorithm that change dj or sa result in
a strict decrease of Hδ.

Case 1: updates by Lines 16 and 18 with dj strictly decreasing. Then the reduc-
tion in the first term in Hδ is at least (∆min)2 and any increase in the second term in
Hδ is less than (Nnode)2, so the definition of δ means the decrease strictly dominates.

Case 2: updates by Lines 16 and 18 with dj constant and sj > si + 1. Then the
first term in Hδ is constant and smi

← si + 1 and smj
← sj − 1 results in a strict

decrease of (smi
)2 + (smj

)2.
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Algorithm 3.10 Mark a cluster and all of its neighbors as unavailable. See Table 2
for variable definitions.

1: function mark-unavailable(a,M,W, Va)
2: Ma ← False . cluster a is unavailable
3: for i ∈ Va do
4: for j such that Wi,j > 0 do . all neighboring nodes of cluster a
5: Mmj ← False . cluster of node j is unavailable

Lemma 3.3. Algorithm 3.5 results in a decrease of the energy (3.2), or preserves
the energy if no change is made to the clustering.

Proof. Only updates by Line 14 will change dj . Because the change is caused by
the use of j as the new center, and qj < qi, the first term in Hδ strictly decreases and
the second term is unchanged.

Theorem 3.4. Algorithm 3.2 terminates, even if Tmax =∞.

Proof. From Lemmas 3.2 and 3.3, all steps in the algorithms that change di or
sa result in a strict decrease of Hδ. Because Hδ is positive and can only take a
finite number of values, and we terminate when no changes are made, this ensures
termination.

Theorem 3.5. Algorithm 3.7 results in a decrease or preservation of the energy
(3.2).

Proof. Because of Line 19, each elimination/split pairing explicitly results in a
decrease of the first term in (3.2) and thus also a decrease in the overall value of Hδ

due to the choice of δ.

To give bounds on the computational complexity of the algorithms we require the
following assumptions on the graph structure.

Assumption 3.1. Assume that the number of edges in G incident on each vertex
in the graph is bounded independently of Nnode, and that the initial centers, c, are
such that clusters found by Algorithm 3.4 have size bounded independently of Nnode.

Theorem 3.6. Under Assumption 3.1, if Tmax and TBFmax are both bounded in-
dependently of Nnode, then the total cost of Algorithm 3.2 is O(Nnode).

Proof. This follows from cost estimates for each of the components of Algo-
rithm 3.2. The inner loop of Algorithm 3.4 has complexity equal to the number
of edges in G, which is O(Nnode) by Assumption 3.1. If TBFmax = O(1), then Al-
gorithm 3.4 has complexity O(Nnode). The cost of Floyd-Warshall on each cluster is
cubic in the cluster size, which we assume (as a function of the initial centers and
clusters) to be O(1), giving a total cost of O(Ncluster) = O(Nnode). Algorithm 3.5 also
has linear complexity. Since Tmax in Algorithm 3.2 is also O(1), the total complexity
is, then, O(Nnode).

Theorem 3.7. Under Assumption 3.1, Algorithm 3.7 terminates with cost at
most O(Nnode logNnode) and, if Tmax is bounded independently of Nnode, then Al-
gorithm 3.6 also has O(Nnode logNnode) total cost.

Proof. From Theorem 3.6, the cost of Algorithm 3.2 is O(Nnode). Both Algo-
rithm 3.8 and Algorithm 3.9 iterate over all clusters and perform bounded work per
cluster (using the bound on cluster size from Assumption 3.1), so they have cost
O(Ncluster) = O(Nnode). Similarly, Algorithm 3.10 has cost independent of Nnode
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because it only iterates over nodes within a single cluster. The cost of Algorithm 3.7
is thus O(Nnode logNnode) because Lines 6 and 7 are O(Ncluster logNcluster) and all
other loops and subroutines are O(Nnode). Finally, assuming Tmax = O(1), we have
the same cost for Algorithm 3.6.

Remark 3.8. The algorithmic complexity of Algorithm 3.7 and, hence, that of
Algorithm 3.6, can be reduced to O(Nnode) by changing the algorithm to separately
treat fixed-size sets of clusters. That is, rather than considering all clusters at once,
partition the set of clusters into subsets and run Algorithm 3.7 separately on each
subset. This will avoid the O(Nnode logNnode) sorts in Lines 6 and 7, leaving the cost
as linear in Nnode. We expect this would lead to some slight reduction in the quality of
the rebalance, because eliminate/split pairings will only be considered within a subset
but, for large subsets, we would not expect this to make a significant difference. This
subset approach is also the natural way to parallelize Algorithm 3.7, with one subset
per processor.

Remark 3.9. Parallelization of Algorithms 3.2 and 3.6 relies on parallelization of
the other underlying algorithms. Both Algorithms 3.1 and 3.5 operate independently
on each cluster and are, thus, naturally parallelizable. Algorithm 3.4 could be nat-
urally parallelized by applying it independently to the set of nodes owned by each
processor in a parallel decomposition.

4. Numerical Results. In this section, we highlight the value of balanced Lloyd
clustering with rebalancing for smoothed aggregation multigrid. All computations
are performed with PyAMG [3]. Unless stated otherwise, all results below consider a
standard Poisson problem of form

−∇ · ∇U = F in Ω,(4.1a)

~n · ∇U = 0 on ∂Ω,(4.1b)

where Neumann boundary conditions are used to highlight clustering near the bound-
ary.2 Equation (4.1) is discretized using either standard P 1 linear finite elements on a
triangulation of the domain, Ω, or Q1 bilinear finite elements on a quadrilateral mesh
of Ω, yielding a matrix problem of the form

(4.2) Au = f.

In the following convergence tests, f is set to zero and a random approximation to u
is used to initialize the AMG cycling.

We consider three main cases of clustering in the context of AMG: standard Lloyd
clustering (Algorithm 2.3), balanced Lloyd clustering (Algorithm 3.2), and balanced
Lloyd clustering with rebalancing (Algorithm 3.7). For each of these, we require a
definition of the weight matrix, W , and the number of clusters, Ncluster. In each case,
we bound the number of inner iterations of Lloyd clustering at five and the number of
rebalance sweeps at four; in practice, this is a conservative bound and the iterations
complete much earlier (due to no change in the clustering state).

To form the weight matrix, W , we consider the so-called evolution measure [18]
which associates a value of strength for each edge in the graph of A in (4.2) based on

smoothing properties. This leads to an initial non-negative weight matrix, Ŵ , where
a large edge value Ŵi,j indicates that nodes i and j should be clustered together.

2With Dirichlet conditions, we would observe “singleton” clusters for the isolated points. This
does not impact the method, only visualization.
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The algorithms above make use of an assumption that the graph associated with W
is connected, but this is not guaranteed to be the case for that of Ŵi,j . Thus, we

augment Ŵ with a small padding for each edge in A, defining W̃ as

(4.3) W̃i,j ← Ŵi,j + 0.1 if Ai,j 6= 0

The Lloyd-based clustering presented here is based on shortest distances in the graph
of W . As a result, we consider the inverse strength as a proxy for distance. This
results in defining W so that

(4.4) Wi,j =
1

W̃i,j

if W̃i,j 6= 0,

so that strong edges refer to shorter distances. With this inversion, the additional
padding added above indicates a long distance in the weight matrix.

4.1. Varying cluster numbers. While Greedy and MIS-based clustering have
been used successfully in many settings, they do not provide a mechanism to control
the number of resulting clusters. Here, we explore the ability of Lloyd clustering to
target specific numbers of clusters. As motivation, consider the model problem on an
unstructured triangulation of the unit disk with 10 245 vertices and 20 158 elements.
We construct multigrid hierarchies using rebalanced Lloyd clustering, setting the tar-
get number of points in each cluster at each level to a fixed value between 3 and 20.
We estimate the asymptotic convergence factor by the geometric mean of the last five
residual norms at convergence, say k iterations:

(4.5) ρ =

(
‖r(k)‖
‖r(k−5)‖

) 1
4

,

where r(k) = f − Au(k) is the residual vector after k iterations. Combined with a
model for the cost of each multigrid cycle, given by the total number of non-zeros in
the sparse-matrix operations in the cycle (i.e., the cycle complexity, χ), this leads to
a measure of the work per digit of accuracy (WPD) for the method:

(4.6) WPD =
χ

− log10(ρ)
.

Figure 4 shows that the efficiency (and effectiveness) of an AMG method can vary
depending on the (average) number of points per cluster; in this case, we observe
that very small clusters lead to rapid convergence (small ρ), yet due to the slower
coarsening, the total complexity of the multigrid cycle is higher.

In the end, balanced Lloyd clustering with rebalancing leads to well-formed clus-
ters and the ability to use a vast range of cluster sizes. Figure 5 illustrates a range of
cases for a smaller mesh of the same domain, from five (large) clusters at one extreme
to 250 small clusters including singleton and many pairwise clusters. True pairwise
clustering [16, 5] is not represented; however, it remains an open question whether a
Lloyd-type algorithm could render nearly pairwise clustering using modified criteria
for tiebreaking and rebalancing.

4.2. Tiebreaking. Algorithm 3.4 introduces “tiebreaking” on Line 12. If a node
in the graph is equidistant from multiple centers, then the node becomes a member
of the neighboring cluster if the neighboring cluster is smaller by two in size than
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Fig. 4. Work per digit (WPD) of accuracy and convergence ρ for clustering sizes ranging from
3–19 points per cluster (on average) using rebalanced Lloyd clustering. The average over 100 runs
is marked ◦ and a trendline from a smoothed cubic spline is given for the mean (solid).
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Fig. 5. Example clustering patterns with the number of clusters ranging from 5 to 250 using
rebalanced Lloyd clustering.

the current cluster of the node. Tiebreaking in the balanced Bellman-Ford algorithm
impacts the uniformity of the sizes of the clusters. To quantify uniformity, we consider
discretizing (4.1) on a uniform 64×64 quadrilateral mesh. We cluster the nodes using
the balanced Bellman-Ford algorithm with and without tiebreaking, requesting the
number of clusters be equal to 10% of the fine-grid number of nodes (rounded down
when this is not an integer). We randomly distribute the initial seeding 1000 times
and, in each case, compute the following metrics: the number of zero diameter clusters
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Fig. 6. Distribution of the number of clusters having zero diameter for balanced Lloyd clustering
with or without tiebreaking for a 64× 64 mesh.
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Fig. 7. Distribution of the standard deviation in the number of nodes and distribution of energy
for balanced Lloyd clustering with or without tiebreaking on a 64× 64 mesh.

(i.e., singleton clusters), the standard deviation in the number of nodes per cluster,
and the energy for each clustering (defined by (3.1)).

Figure 6 shows the number of clusters having zero diameter with and without
tiebreaking, highlighting that tiebreaking substantially decreases the number of clus-
terings with zero diameter clusters, from over one-third of clusterings to about one
percent. Likewise, Figure 7 (left) shows the effect of tiebreaking on the distribution of
the standard deviation in the number of nodes. Here, tiebreaking leads to a decrease
yielding clusters more uniform in size. Tiebreaking also contributes to clusters that
are more round — this is supported by Figure 7 (right), where we see that tiebreaking
decreases the energy of the system. We emphasize that tiebreaking is an inexpensive
strategy that clearly improves performance of the clustering.

4.3. Rebalancing. To quantify the improvements in cluster quality as we move
from standard to balanced, and then to rebalanced Lloyd clustering, we again consider
a 64×64 quadrilateral mesh. Nodes in this mesh are clustered using the three methods,
again using 10% of Nnode to determine Ncluster. In each case, the clustering is repeated
1000 times, yielding a standard deviation of cluster diameter, standard deviation of
number of nodes in clusters, and energy for each test. The results are averaged and
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Fig. 9. (Left) Difference between maximum and minimum diameters of clusters averaged over

1000 samples; (Right) Energy per node averaged over 1000 samples. The shaded regions mark one
standard deviation from the mean.

the same experiment is performed for 16× 16, 32× 32, and 128× 128 meshes.
Figure 8 shows the distributions for each method in the case of a 64 × 64 mesh.

Lower standard deviation of diameter and standard deviation of number of nodes
suggest that the clusters that result from rebalanced Lloyd are more uniform in shape
and size compared to the other methods. This is also reflected by the lower energy for
rebalanced Lloyd clustering. The figure also highlights that variation in the metrics
is lower for rebalanced Lloyd, pointing to the consistency in the method over multiple
runs.

Figure 9 shows the difference between the maximum and minimum diameters
and the energy, averaged over 1000 samples, for each of the clustering methods as we
vary problem size. The figures underscore that rebalanced Lloyd yields more uniform,
rounded clusters having less energy than the other two clustering methods as the mesh
size grows.

4.4. Algebraic multigrid convergence. In the application of clustering to
algebraic multigrid, cluster quality plays an important role in overall convergence of
the method, but one that is not yet quantified by existing sharp measures. While we
can easily confirm improvement (or degradation) in the measured convergence factor
after making a change to a clustering, it is difficult to directly assess if an individual
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cluster is the cause of poor convergence.
One way to localize a bound on AMG convergence is to consider the classi-

cal bound based on smoothing and approximation properties [20, 13]. This theory
considers the convergence of a two-grid cycle with post-relaxation given by u ←
u+M(f −Au) and coarse-grid correction given by u← u+P (PTAP )−1PT (f −Au).
We write G = I−MA and T = I−P (PTAP )−1PTA as the error-propagation opera-
tors of relaxation and coarse-grid correction, respectively, with the error-propagation
operator of the two-grid scheme given by GT . The diagonal of SPD matrix A is
denoted by D. In what follows, we assume that A is SPD, P is of full rank, and
‖G‖A < 1. Theorem 4 of [13] shows that if there exist constants α, β > 0 such that

‖Ge‖2A ≤ ‖e‖2A − α‖e‖2AD−1A for all e,

and ‖Te‖2A ≤ β‖Te‖2AD−1A for all e,

then ‖GT‖A ≤ (1 − α/β)1/2. The first of these is known as the smoothing property,
since it concerns the action of relaxation, G, on errors, e. The second is referred to as
the approximation property, since it quantifies the action of the coarse-grid correction
process. Equations (19) and (20) of [13] show that this approximation property is
guaranteed by the existence of a constant β > 0 such that infec ‖e− Pec‖2D ≤ β‖e‖2A
for all e. Choosing ec = (PTDP )−1PTDe and defining TD = I − P (PTDP )−1PTD
then allows us to quantify such a β as

(4.7) β = sup
e 6=0

eTTTDDTDe

eTAe
.

We find this β by solving for the largest eigenvalue of the generalized eigenvalue
problem TTDDTDe = λAe, and let e be the associated eigenvector. To localize the
measure over a single cluster, we decompose the inner product in the numerator into
a sum over clusters, writing β =

∑Ncluster

i=1 βi, where

(4.8) βi =

(∑
j∈Ωi

(DTDe)j(TDe)j

)
eTAe

This comes from writing the numerator of (4.7) as the inner product of DTDe with
TDe, and then localizing the summation in that inner product over each cluster.

We again consider the Poisson problem on a triangulation of the unit disk with 528
unknowns, and compute (4.8) for each cluster generated by each method. Figure 10
shows that the extreme values of βi are reduced through rebalancing. Indeed, this
is reflected in the convergence shown in Figure 11, where we observe a dramatic
reduction in the number of iterations for solvers with these clusters. It is, of course,
important to note that not every clustering generated by standard Lloyd exhibits
similarly poor performance. The quality of the initial clustering used to seed the
algorithm plays an important role in determining the multigrid performance. Results
seen here are for a representative, randomly generated, initial seeding.

4.5. Additional problems in Algebraic Multigrid. As additional evidence
of the effectiveness of rebalanced Lloyd clustering, we consider several examples in
both 2D and 3D.

3D restricted channel: The 3D domain Ω is defined by a spline on the points

[(0, 4,−8), (0, 4,−6), (0, 1, 0), (0, 4, 6), (0, 4, 8)] ,
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Fig. 11. Example convergence for two-level AMG with different clusterings.

rotated about the z-axis, (see Table 1). A 3D tetrahedral mesh with 16 921 elements is
generated with Gmsh [9] through pygmsh [21]. We use Firedrake [19] to discretize (4.1)
with linear finite elements on tetrahedra, and select an average of 25 points per cluster.

2D restricted channel: The 2D domain Ω is defined by [−2, 2] × [−1, 1] \ C
with C = C+ ∪ C−, for C± representing discs of radius 0.8 at (0,±1) (see Table 1).
As for the 3D restricted channel, we use Gmsh to generate a graded, triangular mesh
with 5832 elements, with a characteristic length of 0.012 at the center and growing
to 0.12 at the left/right edges. This forces tighter clustering toward the center, as
shown in Table 1. The discretization matrix for (4.1) is constructed with linear finite
elements, and we target clusters of size 8.

2D anisotropic diffusion: The 2D domain is defined by the unit square, and
we consider the problem −∇ · K∇u = f with pure Dirchlet conditions. We define

the anisotropic diffusion tensor as K =

[
cos θ − sin θ
sin θ cos θ

] [
1

ε

] [
cos θ − sin θ
sin θ cos θ

]T
, for

ε = 0.1 and θ = π/3. We discretize this on a 42 × 42 uniform mesh (with 1681
elements) and Q1 bilinear elements, and specify a target cluster size of 12.

P2 elements: The 2D domain is a unit disc, on which we consider (4.1). A
triangular mesh is constructed with 982 elements and P2 quadratic finite elements
are used to generate the discretization matrix. We specify 5 nodes per cluster.

In each of the examples of Table 1, a zero right-hand side is used to assess conver-
gence of the smoothed aggregation multigrid solver. From the convergence histories,
we see that rebalanced Lloyd clustering improves solver convergence, even for these
relatively benign problems. For the restricted channel problems, the resulting cluster-
ing resembles the expected isotropic behavior with well rounded clusters. Likewise,
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in the case of anisotropy, we see that the clustering mimics the diffusion direction,
while maintaining balance across clusters. Finally, the P2 case reveals the benefit of
specifying the coarsening ratio: in this case, the coarsening ratio of 1/5 outperforms
greedy coarsening (which yields a ratio of around 1/10).

As a final example, Table 1 highlights a parallel partitioning of an arc heated
combustion channel at the University of Illinois Urbana-Champaign3. In this case,
rebalanced Lloyd effectively partitions the ∼100k mesh elements, keeping refined fea-
tures such as the injector local to a cluster.

5. Conclusions and extensions. In this paper, we study and extend the use
of Lloyd’s algorithm for determining clusters in graphs. Our proposed balanced and
rebalanced Lloyd clustering algorithms are linear in time, guarantee connected clus-
ters, and are consistent with minimizing a quadratic energy functional. In addition,
the algorithms are implemented in Python/C++ and are available through the open
source project PyAMG [3]. One major topic for future work is the choice of that
energy functional; while the steps in the algorithms above are consistent with an `2-
distance style energy, they can easily be extended to other energy functionals in a
consistent way. Theoretical guidance is clearly needed to determine the proper choice
of such a functional. We also note that we consider only serial algorithms in this
paper; properly extending these approaches to their parallel counterparts is also an
important subject for future research.
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Table 1
Additional examples. ACTII mesh credit: Mike Anderson at UIUC.
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Appendix A. Review of algebraic multigrid methods. Algebraic multi-
grid methods seek to approximate solutions to sparse linear systems of the form

(A.1) Au = f

for A ∈ RNnode×Nnode , and u, f ∈ RNnode . Here, we outline aggregation-based AMG
methods for use as an application in the development of Lloyd-style clustering. The
set of indices, {1, . . . , Nnode}, enumerate the degrees of freedom (DoFs) and represent
the fine level in the multilevel grid hierarchy. This set is partitioned and grouped into
disjoint clusters, see Definition 2.1.

Each cluster represents a node in the coarse grid and, collectively, the cluster
mapping defines a tentative restriction operator, R̂, as

(A.2) R̂a,i =

{
1 if vertex i is in cluster a,

0 otherwise.

An example with 12 fine nodes and 3 coarse nodes (clusters) is given in Figure 12;
the pattern for (the transpose of) R̂ is also illustrated.

The restriction pattern defines the tentative interpolation pattern through Ẑ =
R̂T . Smoothed aggregation (SA) AMG proceeds by using the nonzero pattern of Ẑ as
a partition of unity to localize a given global set of vectors, C, defining the near-null
space of matrix A and, then, smoothing each column of the resulting matrix, Z, with
(for example) weighted Jacobi. This defines the smoothed interpolation operator, Z,
from which a coarse-level operator is defined over cluster DoFs as Ac = ZTAZ.
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Fig. 12. Example clustering and restriction matrix.

The complete algorithm for constructing SA AMG is given in Algorithm A.1,
where we note the omission of several details (and optional parameters, denoted by
[opt]) since the focus of this work is primarily on Line 4. We refer the reader to [26, 6,
22] for a more complete description and analysis of aggregation-based AMG methods.
Here, we note that Line 3 is critically important to the convergence of the method;
in practice, unit weights or algebraic distances can be used, yet generalized measures
such as the evolution measure [18] (used in section 4) have proven robust in practice.

Algorithm A.1 Smoothed aggregation — setup

1: function sa-setup(A0, Nlevel, C)
2: for `← 0, . . . , Nlevel − 1 do
3: W ← edge-weights(A`, [opt]) . determine strong edges in graph of A
4: m, c← cluster(W, [opt]) . cluster membership and centers
5: Z` ← interpolation(m,C, [opt]) . form interpolation
6: A`+1 = ZT` A`Z` . construct coarse-level operator

7: return {A`}Nlevel
0 , {Z`}Nlevel−1

0

With a multigrid hierarchy of coarse operators and interpolation, multigrid (MG)
iterates via the familiar V-cycle as in Algorithm A.2. In section 4, we have considered
both two-level (Nlevel = 2) and multilevel results, underscoring improved convergence
by improving the clustering, while leaving the other multigrid parameters untouched.
As we use a subscript within these algorithms to denote the level within the multi-
grid hierarchy, we use a superscript to indicate the multigrid iteration number, with
u(k+1) =MG-V-CYCLE(A0, . . . , ANlevel

,Z0, . . . , ZNlevel−1, u(k), f).

Algorithm A.2 MG cycle

1: function mg-v-cycle(A0, . . . , ANlevel
,Z0, . . . , ZNlevel−1, u0, f0)

2: for ` = 0, . . . , Nlevel − 1 do
3: u` ← relax(A`, u`, f`) . fixed number of relaxation sweeps
4: f`+1 ← ZT` (f` −A`u`) . compute restricted residual

5: uNlevel
← A−1

Nlevel
fNlevel

. solve coarsest level problem
6: for ` = Nlevel − 1, . . . , 0 do
7: u` ← u` + Z`u` . interpolate and correct
8: u` ← relax(A`, u`, f`) . fixed number of relaxation sweeps

9: return u0

Appendix B. Notation. Table 2 summarizes the notation.
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Symbol Definition Domain

A left hand side operator in the linear system Au = f RNnode×Nnode

a cluster index {1, . . . , Ncluster}
B set of border nodes between clusters; B ⊆ V P(V )
ca center node index for cluster a V
c1a, c

2
a new cluster centers if cluster a is split; see Algo-

rithm 3.9
V

δ second-term energy scaling coefficient, see (3.3) R
di shortest-path distance to node i from nearest center;

di =∞ if node i is not in a cluster
R≥0

Di,j shortest-path distance from node i to j within a single
cluster; Di,j =∞ if there is no such path i→ j

R≥0

∆min minimum difference between distinct values of Wi,j R
E set of edges in the graph G P(V × V )
f right hand side of the linear system Au = f RNnode

G graph with nodes V , edges E, and weights W
H shortest-path energy function, see (3.1) R
Hδ energy function minimized by clustering, see (3.2) R
i, j, k node indices V
La energy increase if cluster a is eliminated; see Algo-

rithm 3.8
R

Ma whether cluster a is modifiable during rebalancing {True,False}
mi cluster index (membership) containing node i {1, . . . , Ncluster}
Nnode number of nodes N1

Ncluster number of clusters N1

ni number of nodes with i as predecessor N0

Pi,j predecessor index for node j on the shortest path i→
j within a cluster; Pi,j = 0 if there is no path i→ j

V ∪ {0}

pi predecessor index for node i on the shortest path from
its cluster center; pi = 0 if node i is not in a cluster

V ∪ {0}

qi sum of squared distances from node i to all other
nodes in the same cluster

R≥0

Sa energy decrease if cluster a is split; see Algorithm 3.9 R
sa size (number of nodes) of cluster a N1

si size (number of nodes) of the cluster containing node
i; si = 0 if node i is not in a cluster

N0

T total number of time/iteration steps taken by an al-
gorithm (Tmax and TBFmax denote the maximum)

N0

t time/iteration index N0

u solution vector in the linear system Au = f RNnode

V set of nodes in the graph; V = {1, . . . , Nnode} P(N1)
Va set of nodes in cluster a; Va ⊆ V P(V )
Wi,j weighted adjacency matrix of the graph where Wi,j

is the edge weight i→ j
R

z generic variable placeholder —

Table 2
List of symbols. Here P() denotes the power set and R is the extended reals.
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